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Abstract: This paper presents Critical loads in reinforced concrete beams and columns from force equilibrium approach (FEA). 
It modified the stress block given by BS 8110 to obtain the FEA stress block, whose neutral axis is always half of the effective 
depth. Limits of stresses on concrete and steel as provided by BS 8110 were adhered to. By making use of the limits of moment 
coefficient, k, lever arm, z and neutral axis provided by BS 8110, this paper obtains a stress factor, s which is to be used on the 
FEA stress block. Formulas for calculating areas of compression and tension reinforcements for beams and columns are 
determined based on the axiom that at all times, before failure, total force in the compression zone is in equilibrium with total 
force in tension zone. Formulas for calculating the critical imposed loads on beams are determined. Any imposed load more 
than the critical value will result to violation of the stress and deflection limits. Numerical problems are solved. The values of 
areas of steel reinforcement from FEA and BS 8110 are compared. It is observed that FEA values are always upper bound to BS 
8110 value with average percentage difference that is less than 10%. For a beam with effective depth of 450mm, the span up of 
7960mm can only support self weight without deflection exceeding 15mm limit. Above this span beam without imposed load will 
deflect more than 15mm.  
Keywords: Critical load; reinforced concrete; beam; column; stress block; imposed load ; reinforcement; deflection 

I. INTRODUCTION 
Earlier works on reinforced concrete design are based on equilibrium bending moments in the cross section, hereinafter referred to 
moment equilibrium approach. This is approach used by British, Europe, America, India and South Africa standards ([1], [2], [3], 
[4] and [5]). Reference [6] presented a study titled “alternative method for flexural ultimate limit state design of reinforced 
concrete”, which is is based on stress equilibrium. Even though there merit in their study, it however presents the same problem of 
iterative approach that characterizes the moment equilibrium approach. The present study is trying to overcome this iterative design 
algorithm, which is based on trial and error. A robust algorithm with optimization mechanism is sought. In reinforced concrete 
design, the sought parameters include quantity of reinforcement needed per cross section dimensions, and the imposed load that will 
not led to stresses and deflections, which exceed the limit values. Most of these earlier approaches require experience on the side of 
the designer and iteration to optimize the design. Hence, the evolution of a robust design procedure and equations that can optimize 
the reinforced concrete design of rectangular cross section beams and columns is the primary objective of the present study. 
 

II. METHODOLOGY 
A. Singly Reinforced Beam Of Rectangular Cross Section 
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Figure 1: FEA strength diagram of a reinforced concrete beam 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 

                                                                                                                Volume 7 Issue VII, July 2019- Available at www.ijraset.com 
    

 ©IJRASET: All Rights are Reserved 956 

The flexural strength of concrete is given as a function of compressive cube strength by BS 8110 - 1 (1997) in clause 2.5.3 and 
Figure 2.1 of the same code. The flexural strength of concrete is defined as: 

σୡ୳ = 0.67 
fୡ୳
γ୫

                                                                                               1 

In Equation 1, 0.67 in Equation 13 is a coefficient, which is used to convert concrete cube strength to bending strength of a concrete 
member. m is the concrete material factor of safety given on Table 2.2 of the code as 1.5. Substituting the safety factor of 1.5 into 
Equation 13 gives: 
  σୡ୳ = 0.447 fୡ୳                                                                                             2 
For steel reinforcement bar used in concrete in flexure, the allowable stress is defined as: 

σୱ୳ =  
f୷
γ୫

                                                                                                          3 

The material safety factor for steel reinforcement is given on Table 2.2 of the code as 1.05. Substituting this value of factor of safety 
into Equation 15 gives:  
  σୱ୳ = 0.952 f୷                                                                                               4 
The stress in a rectangular section under flexure (bending) is defined mathematically as: 

σ =
6M
bdଶ                                                                                                             5 

Moment coefficient is given by BS 8110 – 1 (1997) in clause 3.4.4.4 as: 

k =
M

fୡ୳bdଶ =
0.447 M
σୡ୳bdଶ                                                                                   6 

Rearranging Equation 6 gives: 

fୡ୳ =
M

kbdଶ                                                                                                         7 

In the same clause 3.4.4.4 of BS 8110 – 1 (1997), the lever (moment) arm to depth ratio is defined as: 

z
d = 0.5 + ඨ0.25−

k
0.9                                                                                  8 

Rearranging Equation 8 and making k the subject gives: 

k = 0.9 ൤0.25− ቀ
z
d− 0.5ቁ

ଶ
൨                                                                          9 

The domain of lever (moment) arm allowed by clause 3.4.4.4 of BS 8110 – 1 (1997) is: 

0.775 ≤
z
d ≤ 0.95                                                                                           10 

Substituting the limits of Equation 10 into Equation 9 gives the domain of k as: 
0.0428 ≤ k ≤ 0.15694                                                                                 11 
Dividing Equation 5 by Equation 7 gives” 
σ

fୡ୳
= 6k                                                                                                             12 

Substituting the limits of Equation 11 into Equation 12 gives the following limits: 

0.2565 ≤
σ

fୡ୳
≤ 0.9416                                                                               13 

Substituting Equation 2 into Equation 13 gives: 

0.574 ≤
σ
σୡ୳

≤ 2.107                                                                                     14 

From Equations 13 and 14, the allowable stress in concrete is 2.107 σcu or 0.9416 fcu (depending on the parameter one wants to use).  
When the applied stress is more than the allowable stress, then the excess must be borne by reinforcement steel. Furthermore, the 
clause 3.4.4.4 of BS 8110 – 1 (1997) give the neutral axis depth as function of lever arm as: 

x =
d − z
0.45                                                                                                           15 

Substituting Equation 10 into Equation 15 give the domain of the neutral axis as: 
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0.1111 ≤
x
d ≤ 0.5                                                                                          16 

Figure 3.3 of BS 8110 – 1 (1997) gives the depth of stress block as: 
g ≤ 0.9x                                                                                                            17 
Substituting Equation 17 into Equation 16 gives: 

0.1 ≤
g
d ≤ 0.45                                                                                                18 

However, the present study is taking the ratio of g to d (g/d) as half the stress factor, s. Thus, the domain of stress factor for concrete 
is: 

0.1 ≤
s
2 ≤ 0.45                                                                                              19a 

Multiplying Equation 19a by two gives: 
0.2 ≤ s ≤ 0.9                                                                                             19b 
When the stress factor (s) is more than 0.9, then the section has reached the maximum stress the concrete can bear. The excess of the 
stress shall be borne by the reinforcement steel. Using Equations 14 and 19b, linear relationships between stress factor and stress 
ratio are obtained as: 

s = 0.457 
σ
σୡ୳

− 0.062                                                                              20a 
σ
σୡ୳

= 2.188 s + 0.136                                                                               20b 

When the beam is loaded laterally, flexural stress, σ is developed. The stress block is as shown on Figure 1 (a). This is parabolic 
stress block since the material is concrete. In this study, the parabolic stress block is converted to equivalent rectangular stress block 
as shown on Figure 1 (b). The modified stress, σm due to change of stress block from parabolic to rectangular block is the product of 
the flexural strength and the stress factor given as: 
σ୫ = σୡ୳ s                                                                                                       21a 
Replacing the stress factor with 0.9 in Equation 21a gives the limiting modified stress, beyond which reinforcement is needed. This 
limiting modified stress is: 
σ୫ ୟ୪୪୭୵ = 0.9 σୡ୳                                                                                          21b 
Total compressive force above the neutral axis (N. A.) as shown on Figure 1 (b) is the area of the modified stress block given as: 

Fୡ = σୡ୳sb ×
d
2 = 0.5 σୡ୳bds                                                                     22 

The cross section is at all times in equilibrium. Thus, the total tensile force below the neutral axis (N. A.) as shown on Figure 1 (b) 
is the area of the stress block given as: 
F୲ = 0.5 σୡ୳bds                                                                                               23 
The total force resisted by the steel rods as a result of the force below the neutral axis (as presented on Equation 23) is the product of 
area and allowable stress of reinforcement: 
F୲ୱ = F୲ =  σୱ୳A୲ୱ                                                                                           24 
The maximum area of reinforcement allowed in either of compression or tension reinforcement is giving in clause 3.12.6 BS 8110 – 
1 (1997) as 4% percent of gross area of the cross section. However, the present study is limiting the maximum area of reinforcement 
allowed in either of compression or tension reinforcement to be 4% of the net area of the cross section giving as: 
A୲ୱ ≤  0.04 bd                                                                                                    25 
Substituting Equation 23 into Equation 24 and making area of steel the subject gives: 

A୲ୱ = 0.5 
σୡ୳
σୱ୳

bds                                                                                              26 

Comparing Equations 25 and 26 gives limiting stress factor as: 

s୫ୟ୶ = 0.08 
σୱ୳
σୡ୳

                                                                                                27 

Doubly reinforced beam of rectangular cross section 
Figure 1 (c) shows the stress below which compression reinforcement is not needed and above which compression reinforcement is 
needed. When compression reinforcement is needed, figure 1(d) is used. In this case, the force (Fcc) resisted by the concrete in the 
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compression zone is less than the applied force (Fc) in the zone. Substituting Equation 21b into Equation 22 gives the maximum 
force concrete can resist:  
Fୡୡ = 0.5 σୡ୳ × 0.9bd = 0.45 σୡ୳bd                                                        28 
Subtracting Equation 28 from Equation 22 gives the force to be resisted by compression reinforcement as: 
Fୡୱ = 0.5 σୡ୳sbd− 0.45 σୡ୳bd.   That is: 
Fୡୱ = 0.5σୡ୳bd( s − 0.9 )                                                                            29 
The total force exerted on the compression steel rods is the product of area and allowable stress of reinforcement: 
Fୡୱ =  σୱ୳Aୡୱ                                                                                                   30 
Equating Equations 29 and 30 and making the area of compression reinforcement the subject gives: 

Aୡୱ = 0.5
σୡ୳
σୱ୳

bd( s − 0.9 )                                                                        31 

Reinforced column of rectangular cross section 
A column is a member subject to both axial and flexural loads. This is called combined stress. That is combination of axial 
compressive stress and flexural stress on the column cross section. The equations that support flexural load have been determined in 
Equations 22, 23, 24 and 30. The next thing to be done is to determine the equations that support the axial load. This is done by 
assuming the cross section is in pure axial compression. The code (BS 8110 – 1, 1997) in clause 3.8.4 provided two equations 
(Equations 38 and 39), which are reproduced here as Equations 32 and 33. 
N = 0.4 fୡ୳Aୡ + 0.8f୷Aୱ                                                                             32 
N = 0.35 fୡ୳Aୡ + 0.7f୷Aୱ                                                                           33 
For more conservativeness, Equation 33 is adopted to the present design. The cross section is assumed to be symmetric such that 
compressive zone is the mirror image of tensile zone. Equation 33 is written more precisely in terms of material areas in 
compression and tension as; 
N = 0.35 fୡ୳(Aୡୡ + A୲ୡ) + 0.7f୷(Aୡୱ + A୲ୱ)                                        34 
If each zone is a mirror image of the other, then two equations are obtained from Equation 34 as: 
0.5N = 0.35 fୡ୳Aୡୡ + 0.7f୷Aୡୱ  = 0.175 fୡ୳bd + 0.7f୷Aୡୱ             35 
0.5N = 0.35 fୡ୳A୲ୡ + 0.7f୷A୲ୱ   = 0.175 fୡ୳bd + 0.7f୷A୲ୱ             36 
Rearranging Equations 35 and 36 gives: 
0.7f୷Aୡୱ = 0.5N− 0.175 fୡ୳bd                                                               37 
0.7f୷A୲ୱ = 0.5N − 0.175 fୡ୳bd                                                               38 
The implication of Equation 37 is: 
F୒ୡୡ = 0.5N− 0.175 fୡ୳bd                                                                       39 
F୒ୡୱ = 0.7f୷Aୡୱ                                                                                            40 
In the same way, implication of Equation 38 is: 
F୒୲ୡ = 0.5N − 0.175 fୡ୳bd                                                                      41 
F୒୲ୱ = 0.7f୷Aୱ୲                                                                                            42 
The combined force in the compression zone is obtained by adding Equations 22 and 39. That is: 
Fୡ + F୒ୡୡ = 0.5 σୡ୳bds + 0.5N− 0.175 fୡ୳bd                                    43a 
Substituting Equation 2 into Equation 43a gives: 
Fୡ + F୒ୡୡ = 0.5σୡ୳bd(s− 0.783 ) + 0.5N                                           43b 
Similarly, the combined force in the tension zone is obtained by subtracting Equation 23 from Equation 41. That is: 
F୒୲ୡ − F୲ = 0.5N− 0.175 fୡ୳bd− 0.5 σୡ୳bds                                    44a 
Substituting Equation 2 into Equation 44a gives: 
F୒୲ୡ − F୲ = 0.5N− 0.5 σୡ୳bd(s + 0.783)                                            44b 
The resistant force in compression zone is the average of Equations 30 and 40. That is: 

Fୡୱୟ =
σୱ୳Aୡୱ + 0.7f୷Aୡୱ

2                                                                            45 

In the same way, the resistant force in tension zone is the average of Equations 24 and 42. That is: 

F୲ୱୟ =
σୱ୳A୲ୱ + 0.7f୷Aୱ୲

2                                                                            46 
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Substituting Equation 4 into Equations 45 and 46 gives: 

Fୡୱୟ =
σୱ୳A୲ୱ + (0.7 0.952⁄ )σୱ୳Aୡୱ

2 = 0.8676σୱ୳Aୡୱ                         47 

F୲ୱୟ = 0.8676σୱ୳A୲ୱ                                                                                     48 
For equilibrium of force in the compression zone, Equations   43a and 47 must be equal as: 
0.8676σୱ୳Aୡୱ = 0.5[N + σୡ୳bd(s− 0.783 )]                                       49 
For equilibrium of force in the tension zone, Equations   44a and 47 must be equal as: 
0.8676σୱ୳A୲ୱ = 0.5[N− σୡ୳bd(s + 0.783 )]                                       50 
Rearranging Equation 49 and making the area of reinforcement steel the subject gives: 

Aୡୱ = 0.5763 ൤
N
σୱ୳

+
σୡ୳
σୱ୳

bd(s − 0.783 )൨                                              51 

Negative result indicates that reinforcement is not needed. Similarly, rearranging Equation 50 and making the area of reinforcement 
steel the subject gives: 

A୲ୱ = 0.5763 ൤
N
σୱ୳

−
σୡ୳
σୱ୳

bd(s + 0.783 )൨                                              52 

Negative result indicates that flexural load is more that axial load and does not mean that reinforcement is not needed. Hence, the 
absolute value is taken. Moment stress resultant for beam is commonly defined as: 
σ୶ = Eε୶                                                                                                          53 
From the work of Reference [7], the deflection and normal strain for RBT3 (one of the two refined beam theories they presented) is: 
w = Aଵh                                                                                                                      54 

ε୶  = Aଷ. z
dଶh
dxଶ                                                                                                           55a 

εୖ  = Aଷ.
St
Lଶ .

dଶh
dRଶ                                                                                                      55b 

Where: 

Aଵ =
kଷ  ൬kଵ + 6(L t⁄ )ଶ

1 + μ kଶ൰

6(L t⁄ )ଶ
1 + μ kଵkଶ

.
qLସ

Dଵ
                                                                         56 

Aଷ = −
kଷ 
kଵ

.
qLସ

Dଵ
                                                                                                        57 

    Dଵ =
Ebtଷ 

12                                                                                                             58 

Where h is shape function taken from the work of Reference [8]. The shape functions and their maximum numerical values are 
presented on Table 1. On the other hand the numerical values of stiffness coefficient, k1, k2 and k3 for beams of various boundary 
conditions are presented on Table 2. Substituting Equation 58 into Equation 57 gives: 

Aଷ = −12
kଷ 
kଵ

.
qLସ

Ebtଷ  = −
1 
2 .

qLସ

Ebtଷ                                                                     59 

Where k1/k3 =24 for all flexural boundary conditions of beam (see Table 2). Substituting Equation 55b into Equation 53 gives: 

σୖ = E. Aଷ.
St
Lଶ .

dଶh
dRଶ                                                                                                 60 

Substituting Equation 59 into Equation 60 gives: 

σୖ  = −
S 
2b . q(L t⁄ )ଶ.

dଶh
dRଶ                                                                                     61 

Maximum stress occurs at either the bottom surface or the top surface where absolute numerical value of R is 0.5. Substituting S = 
0.5 into Equation 61 gives: 

σୖ  = −
1 
4b . q(L t⁄ )ଶ.

dଶh
dRଶ                                                                                    62 

Substituting Equation 58 into Equation 56 and rearranging gives: 
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Aଵ  = 2(1 + μ). (L t⁄ ).ቆ
kଵkଷ
kଵkଶ

+
6(L t⁄ )ଶ

1 + μ
kଶkଷ
kଵkଶ

ቇ .
qL
Eb = 2(1 + μ). ቆ

kଵkଷ
kଵkଶ

+
(L t⁄ )ଶ

4(1 + μ)ቇ .
qL(L t⁄ )

Eb     .   That is: 

Aଵ  = ቈ2(1 + μ). ൬
kଵkଷ
kଵkଶ

൰+
(L t⁄ )ଶ

2
቉ .

qL(L t⁄ )
Eb                                                63 

Substituting Equation 63 into Equation 54 and making load the subject gives: 

q =
1

(L t⁄ ). k୵. h .
wEb

L                                                                                           64 

w =
q(L t⁄ ). k୵. hL

Eb                                                                                                 64 

Where: 

k୵ =  2(1 + μ). ൬
kଵkଷ
kଵkଶ

൰+ 0.5(L t⁄ )ଶ                                                                 65 

Let the allowable deflection be denoted as wall. Also let the imposed and self weight be denoted as qi and qs respectively. With 
these denotations, a formula for critical imposed load, qiw on the beam before allowable deflection is reached is obtained using 
Equation 64: 

q୧ୡ୵ =
1

(L t⁄ ). k୵. h୫ୟ୶
 .

wୟ୪୪. Eୡ. b
L − qୱ                                                           66 

Where: 
qୱ = γ. b. t                                                                                                                 67 
Gamma  is the unit weight. In a similar manner, the yield stress is denoted as σcu. By rearranging Equation 62, a formula for critical 
imposed load, qif on the beam before yield stress is reached is obtained as: 

q୧ୡ୤ is difference between absolute value of ൤
4 b σୡ୳

(L t⁄ )ଶ. h୫ୟ୶ᇱᇱ ൨  and self weight.  That is: 

q୧ୡ୤ = ฬ
4 b σୡ୳

(L t⁄ )ଶ. h୫ୟ୶ᇱᇱ ฬ − qୱ   = ฬ
4 b σୡ୳

(L t⁄ )ଶ. h୫ୟ୶ᇱᇱ ฬ − γ. b. t                                                   68 

Rearranging Equations 27 and making flexural strength of concrete subject gives:  

σୡ୳ = 0.08 
σୱ୳

s୫ୟ୶
                                                                                                                       69 

Substituting Equation 69 into Equation 68 and making some rearrangements gives: 

q୧ୡ୤   = b൬ฬ
0.32  σୱ୳

(L t⁄ )ଶ. h୫ୟ୶ᇱᇱ  . s୫ୟ୶
ฬ − γ. t൰                                                                 70 

Rearranging Equation 53 and making the strain the subject, allowable strains in steel and concrete can be written as: 

εୱ୳ =
σୱ୳
Eୱ

                                                                                                                      71 

εୡ୳ =
σୡ୳
Eୡ

                                                                                                                      72 

Since there is no relative movement between the concrete and steel in the reinforced concrete beam before failure then the total 
strain in concrete is the same with that of steel. Hence, Equation 71 is the same as Equation 72. That is: 

σୱ୳
Eୱ

=
σୡ୳
Eୡ

                                                                                                                     73 

Rearranging Equation 73 gives: 

Eୡ =
σୡ୳
σୱ୳

Eୱ                                                                                                                  74 

Substituting Equation 74 into Equation 66 and making some rearrangements gives: 

q୧ୡ୵ = b ൬
wୟ୪୪. Eୱ. b

(L t⁄ ). k୵. h୫ୟ୶. L .
σୡ୳
σୱ୳

− γ. t൰                                                            75 

The least value among the critical loads on Equations 70 and 75 is the desired critical load. These two equations were used to graphs 
critical L/t (span to thickness ratios) versus beam thickness. This critical L/t is the L/t above which deflection based critical imposed 
load equation (Equation 75) is desired and below which stress based critical imposed load equation (Equation 70) is desired. The 
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graphs are presented on Figures 2, 3, 4 and 5. For allowable deflections of 10mm, 15mm, 20mm and 25mm the respective critical 
L/t equations are: 
L t⁄ =  147.6674 (tି଴.ହ଴ଵ଻)                                                                                   76 
L t⁄ =  180.2782(tି଴.ହ଴ଵଷ)                                                                                    77 
L t⁄ =  209.2818 (tି଴.ହ଴ଶଵ)                                                                                   78 
L t⁄ =  232.8318 (tି଴.ହ଴ଵସ)                                                                                   79 
 

Table 1: Shape functions and its derivatives and their maximum numerical values 
Line 

continuum h h’ h’’ 
h’’’ 

S – S ܴ − 2ܴଷ + ܴସ 
ℎ௠௔௫ = 0.3125 

1 − 6ܴଶ + 4ܴଷ 
ℎ௠௔௫ᇱ = ݎ݋ 1 − 1 

12(ܴଶ −ܴ) 
ℎ௠௔௫ᇱᇱ = −3 

12(2ܴ − 1) 
ℎ௠௔௫ᇱᇱᇱ = − ݎ݋12 12 

C - C ܴଶ − 2ܴଷ + ܴସ 
ℎ௠௔௫ = 0.0625 

2ܴ − 6ܴଶ + 4ܴଷ 
ℎ௠௔௫ᇱ = 0.19245 

2 − 12ܴ + 12ܴଶ 
ℎ௠௔௫ᇱᇱ = 2 

12(2ܴ − 1) 
ℎ௠௔௫ᇱᇱᇱ = − ݎ݋ 12 12 

C - S 1.5ܴଶ − 2.5ܴଷ + ܴସ 
ℎ௠௔௫ = 0.12999 

3ܴ − 7.5ܴଶ + 4ܴଷ 
ℎ௠௔௫ᇱ = −0.5 

3 − 15ܴ + 12ܴଶ 
ℎ௠௔௫ᇱᇱ = 3 

3(8ܴ − 5) 
ℎ௠௔௫ᇱᇱᇱ =  −15 

C – F 
(bending) 

6ܴଶ − 4ܴଷ + ܴସ 
ℎ௠௔௫ = 3 

12ܴ − 12ܴଶ + 4ܴଷ 
ℎ௠௔௫ᇱ = 4 

12− 24ܴ + 12ܴଶ 
ℎ௠௔௫ᇱᇱ = 51 

24(ܴ − 1) 
ℎ௠௔௫ᇱᇱᇱ = −24 

C – F 
(buckling) 

−8ܴଶ + 2 3⁄ ܴଷ + ܴସ 
ℎ௠௔௫ = n. a. 

−16ܴ + 2ܴଶ + 4ܴଷ 
ℎ௠௔௫ᇱ = n. a. 

−16 + 4ܴ + 12ܴଶ 
ℎ௠௔௫ᇱᇱ = n. a. 

4(8ܴ − 1) 
ℎ௠௔௫ᇱᇱᇱ = n. a. 

n.a. means not applicable 

Table 2: Values of stiffness coefficient for beams of various boundary conditions 
Line 

continuum ݇ଵ ݇ଶ ݇ଷ ݇ଵ/݇ଶ ݇ଵ/݇ଷ ݇ଵ.݇ଶ ݇ଵ.݇ଷ ݇ଶ.݇ଷ 
݇ଵ.݇ଷ
݇ଵ.݇ଶ

 
݇ଶ.݇ଷ
݇ଵ.݇ଶ

 

S – S 4.8 17 35⁄  1 5⁄  9.8824 24 2.33143 0.96 0.09714 0.411765 1/24 
C - C 4 5⁄  2 105⁄  1 30⁄  42 24 0.01524 0.026667 0.00063 1.75 1/24 
C - S 9 5⁄  3 35⁄  3 40⁄  21 24 0.15429 0.135 0.00643 0.875 1/24 
C – F 

(bending) 144 5⁄  72 7⁄  6 5⁄  104 45⁄  24 296.229 34.56 12.3429 0.116667 1/24 

C – F 
(buckling) 1832 15⁄  1732 35⁄  n.a. 2.4681 n.a. n.a. n.a. n.a. n.a. n.a. 

n.a. means not applicable 
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Figure 2: Critical L/d  for 10mm allowable deflection 
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B. Numerical Problems 
It is required to determine the quantity of compression and tension reinforcement steel bars for rectangular cross sectional beams of 
various properties and loads using Force Equilibrium Approach (FEA) presented in this paper and the Moment Equilibrium 
Approach given by BS 8110 – part 1 (1997). It is also required to determine the compression and tension reinforcement steel bars 
for rectangular cross sectional columns of various properties and loads using Force Equilibrium Approach (FEA). 
It is required to determine the maximum imposed load on a simply supported reinforced rectangular cross section beam such that 
neither the allowable stress in concrete nor allowable deflection is exceeded. The modulus of elasticity of steel is 200, 000N/mm2. 
The allowable stresses in concrete and steel are σcu = 0.447 fcu and σsu = fy/1.05 respectively, and allowable deflection is 15mm. unit 
weight of reinforced concrete is 24 kN/m3. 
It is required to critical imposed loads on reinforced concrete beams whose spans ranges from 1000mm to 7000mm, effective depth 
is 450mm and width is 225mm. The allowable deflection is 15mm and the reinforcement steel high yield steel (with 460MPa 
strength and Es = 200 kN/mm2). The compressive cube strength of the concrete is 25 kN/mm2 and unit weight of reinforced 
concrete is 24 kN/m3. 

III. RESULTS AND DISCUSSIONS 
The results of beam design are presented on Tables 3, 4 and 5. It is observed from the tables that the quantities of steel rods from 
FEA are upper bound to those from MEA. This implies that FEA does not underestimate quantity of reinforcement required in 
beams for various loads. The average percentage differences between the results from FEA and MEA as seen on Tables 3, 4 and 5 
are 6.32, 7.21 and 8.76 respectively. One can say that MEA is more economical in terms of cost of steel where as FEA presents 
higher factor of safety in terms of cost of steel. Although economy and safety are veritable parameters in design, safety take 
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Figure 3: Critical L/d  for 15mm allowable deflection 
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Figure 4: Critical L/d  for 20mm allowable deflection 
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Figure 5: Critical L/d  for 25mm allowable deflection 
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precedence over economy. Another good feature of FEA is the ease simplicity of its calculations with very simple formulas when 
compared with MEA.  
The results for column design are presented on Tables 6 and 7. It is observed that when either the axial load or the bending moment 
is kept constant and the other is allowed to vary, compression reinforcement always increases as the varying load increases. On the 
other hand, the tension reinforcement decreases as the varying load increases to a point (where axial forces from axial load becomes 
equal to axial force from bending moment) and starts to increase. 
A good observation here is the simplicity of FEA in rectangular section column design. This makes designing rectangular cross 
sectional column very easy. This is unlike using MEA which most times requires the use design charts. Charts are not amenable to 
computer; hence, it will be difficult to program design of rectangular column whose design is based on design charts. 
The critical imposed loads on the beams are presented on the fifth column of Table 8. This critical imposed load is the smaller of the 
values presented on the third and fourth columns of the table. With these critical loads, the stresses and deflections of the beams are 
at worst equal to the allowable values. For span to depth ratios less than 7.8, any imposed load more than the critical value will 
result into stresses more than the allowable stress of 11.175 MPa. On the other hand, for L/d up to or more than 8.9, any imposed 
load more than the critical imposed load will result into deflections exceeding the allowable limit of 15mm. An observation that is 
worthy of note is that for this beam whose effective depth is 450mm, the tolerable length and L/d are respectively 7960mm and is 
17.69. When the span exceeds 7960mm, the beam deflection will exceed 15mm under only self weight. 
Table 3: Quantities of steel rods for rectangular section beam with b = 250mm, h = 350mm, c = 25mm, rebar = Y16, link = R8, fcu = 
30 Mpa, Asmin = 100.1mm2, Asmax = 2719.2mm2 

 FORCE BS 8110 
M Ast Asc Ast Asc 

26.94 208.3336 0 210.0072 0 
30 239.3243 0 235.3562 0 
50 441.8781 0 410.3758 0 
70 644.4319 0 605.7556 0 
90 846.9857 0 830.8637 0 
120 1150.816 214.4326 1124.61 185.2246 
160 1555.924 619.5403 1466.152 526.7663 
200 1961.032 1024.648 1807.694 868.308 
240 2366.139 1429.756 2149.235 1209.85 
270 2669.97 1733.586 2405.392 1466.006 

Legend: b = width of section, h = height of section, c = concrete cover to reinforcement, rebar = reinforcement bar, Asmin = 
minimum area of reinforcement, Asmax = maximum area of reinforcement 

Table 4: Quantities of steel rods for rectangular section beam with b = 250mm, h = 300mm, c = 25mm, rebar = Y16, link = R8, fcu = 
25 Mpa, Asmin = 85.8mm2, Asmax = 2279.2mm2 

 FEA BS 8110 
M Ast Asc Ast Asc 

15.75 145.2477 0 146.4676 0 
20 196.5998 0 188.8632 0 

32.5 347.6353 0 322.6246 0 
45 498.6709 0 474.2502 0 

57.5 649.7064 0 653.6721 0 
70 800.742 146.6874 786.7802 130.629 
110 1284.056 630.0012 1206.657 550.506 
150 1767.369 1113.315 1626.534 970.3829 
190 2250.683 1596.629 2046.411 1390.26 
192 2274.849 1620.794 2067.405 1411.254 

Legend: as before 
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Table 5: Quantities of steel rods for rectangular section beam with b = 250mm, h = 400mm, c = 25mm, rebar = Y16, link = R8, fcu = 
25 Mpa, Asmin = 130 mm2, Asmax = 3590 mm2 

FEA BS 8110 
M Ast Asc Ast Asc 
34.4 228.8999 0 230.7991 0 
45 321.3017 0 307.2696 0 
70 539.2304 0 500.3743 0 
95 757.1591 0 716.7064 0 
120 975.0878 0 967.4435 0 
170 1410.945 380.7348 1352.591 319.0782 
250 2108.317 1078.107 1928.272 894.7586 
330 2805.689 1775.479 2503.952 1470.439 
410 3503.061 2472.851 3079.632 2046.119 
420 3590.233 2560.022 3151.592 2118.079 

Legend: as before 

Table 6: Quantities of steel rods for rectangular section column with b = 225mm, h = 225mm, c = 25mm, rebar = Y16, link = R8, fcu 
= 25 Mpa, Asmin = 202.5 mm2, Asmax = 2484 mm2 

M N Asc Ast 
0 1000 838.94 838.94 
10 1000 997.24 680.64 
20 1000 1193.27 484.60 
30 1000 1389.30 288.57 
40 1000 1585.34 202.50 
50 1000 1781.37 202.50 
60 1000 1977.40 299.53 
70 1000 2173.44 495.56 
80 1000 2369.47 691.60 
85 1000 2467.49 789.61 

Legend: as before 

Table 7: Quantities of steel rods for rectangular section column with b = 225mm, h = 225mm, c = 25mm, rebar = Y16, link = R8, fcu 
= 30 Mpa, Asmin = 225 mm2, Asmax = 2821.5 mm2 

M N Asc Ast 
50 50 227.73 1395.25 
50 200 425.05 1197.93 
50 350 622.37 1000.61 
50 500 819.69 803.29 
50 650 1017.01 605.97 
50 800 1214.33 408.65 
50 950 1411.65 225.00 
50 1100 1608.97 225.00 
50 1250 1806.29 225.00 
50 1400 2003.61 380.63 

Legend: as before 

Table 8: Critical imposed loads on beams of rectangular section with b = 225mm, d = 450mm, self weight, qs = 2.43 kN/m, fcu = 30 
Mpa, fy = 460 MPa, Es = 200kN/ mm2 

L (mm) L/d 
qicw 

(kN/m) 
qicf 

(kN/m) 

Critical 
Load, qic 
(kN/m) 

Total load, 
q = qic + qs 

(kN/m) 

stress, σ 
MPa 

Deflection, w 
(mm) 

1000 2.222 9752.201 676.451 676.451 678.881 11.175 1.044 
1500 3.333 1924.411 299.295 299.295 301.725 11.175 2.349 
2000 4.444 607.234 167.290 167.290 169.720 11.175 4.176 
2500 5.556 247.289 106.191 106.191 108.621 11.175 6.525 
3000 6.667 117.998 73.001 73.001 75.431 11.175 9.395 
3500 7.778 62.574 52.989 52.989 55.419 11.175 12.788 
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4000 8.889 35.674 40.000 35.674 38.104 10.036 15 
4500 10.000 21.358 31.095 21.358 23.788 7.929 15 
5000 11.111 13.177 24.725 13.177 15.607 6.423 15 
5500 12.222 8.230 20.012 8.230 10.660 5.308 15 
6000 13.333 5.097 16.428 5.097 7.527 4.460 15 
6500 14.444 3.035 13.638 3.035 5.465 3.800 15 
7000 15.556 1.633 11.425 1.633 4.063 3.277 15 
7500 16.667 0.653 9.639 0.653 3.083 2.855 15 
7960 17.689 0.000 8.284 0.000 2.430 2.534 15 
8000 17.778 -0.048 8.178 -0.048 2.382 2.509 15 
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