

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 7 Issue: VIII Month of publication: August 2019 DOI: http://doi.org/10.22214/ijraset.2019.8024

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Uncertainty Structure of Parameterised Finite

Groups

J.Saranya¹, Dr. V. Ramadoss²

¹Research Scholar, Department of Mathematics, PRIST University, Tanjore, Tamilnadu ²Professor, Department of Mathematics, PRIST University, Tanjore, Tamilnadu

Abstract: In this paper, we study soft normal subgroups of subgroups, direct product of fuzzy soft normal subgroups and their properties.

Keywords: Fuzzy set, fuzzy relation, soft set, s-norm, normal subgroup, similar.

I. INTRODUCTION

In various algebra, a normal subdivision group is a subgroup that is invariant under opposition by members of the group of which it is a part. Alternatively a subgroup H of a group G is normal in G if and only if eH = He for all e in G [4]. For centuries uncertain theory[5] and error study have been the only models to treat imprecision and uncertainty in [3]. Even though [2] recently a lot of new models have been analysed for handling incomplete information. In this article, we obey the direct product form of uncertainty function.

II. PRELIMINARIES

A. Definition 2.1:

A uncertainty subset of G, we mean a function $cv: G \to I$ The set of all uncertainty subsets of G is known the I-power set of G and is denoted by I^G . A uncertainty combination, on G we mean a map $cv: G \times G \to I$ Denote by $F_R(G)$, the set of all uncertainty relations on G.

B. Definition 2.2:

Let
$$cv_1, cv_2 \in F_R(G)$$
 and $x, y \in G$. we set

(i)
$$cv_1 \subseteq cv_2$$
 if and only if $cv_1(x, y) \le cv_2(x, y)$

(ii) $cv_1 = Acv_2$ if and only if $cv_1(x, y) = cv_2(x, y)$.

C. A Co-norm S is a map $cv: I \times I \rightarrow I$ having the following Rules:

$$(cv_1)$$
 $cv(xm*+p,0) = x$ (neutral element)

 (cv_2) $cv(xm^*+p, ym^*+c) \le cv(x, z)$ if $y \le z$ (monotonicity)

 (cv_3) $cv(xm^* + p, ym^* + c) = cv(y, x)$ (commutativity)

$$(cv_4)$$
 $cv(x, cv(ym^*+p, z)) = cv(cv(x, ym^*+c), z)$ (associativity) for all $x, y, z \in I$

D. Definition 2.4:

Let 'j' be a uncertainty parameterised subset of a group G, then 'j' is called a uncertainty parameterised subgroup of G under a co norm (S- uncertainty parameterised subgroup) if and only if for all $x, y \in G$.

(i)
$$cv(xym^*+c) \le cv(j(x), j(y))$$

(ii) $cv(x^{-1}m^*+c) \le cv(x)$.

Denote by cv(G), the set of all co norm- uncertainty parameterised subgroup of G.

Example 2.5: Let $G = \{1, i, -1, -i\}$ be a group with respect to . Define uncertainty subset $cv: G \to [I]$ as

$$cv(x) = \begin{cases} am^{*}/b, & \text{if } x = 1 \\ bm^{*}/c, & \text{if } x = -1 \\ am^{*}/c, & \text{if } x = \pm i \end{cases}$$

E. Definition 2.5:

$$f: \frac{G_1}{H_1} \to \frac{G_2}{H_2}, \ cv1 \in [I]^{\frac{G_1}{H_1}} \text{ and } \ cv2 \in [I]^{\frac{G_2}{H_2}}$$

Define
$$f(cv1) \in [I]_{H_2}^{\underline{G_2}}$$
 as $f(e_1H_1) = e_2H_2$ if $f^{-1}(e_2H_2) \neq 0$
 $f(cv1)(e_2H_2) = \begin{cases} \inf \{cv1(e_1H_1)/e_1H_1 \in \frac{G_1}{H_1} \\ 0, & \text{if } f^{-1}(e_2H_2) = \phi \end{cases}$
for all $e_2H_2 \in \frac{G_1}{H_1}$.

F. Definition 2.6:

A uncertainty parameterised relation $cv: Group \times Group \rightarrow [I]$ on a group G is a S- uncertainty parameterised combinations on G if the following conditions are satisfied.

(i)
$$cv(xm^*+p, x)=0$$

(ii) $cv(xn^*+p, y)=cv(y, x)$
(iii) $cv(xm^*+c, z) \le cv(cv(x, y), cv(y, z))$, for all $x, y, z \in G$.

G. Example 2.7:

Let Group = (Z, +) be a group of integer numbers. Set $cv : Z * \times Z^* \to [I]$ by $cv(x, y) = \begin{cases} 0, & \text{if } x = y \\ dm^*/c, & \text{otherwise} \end{cases}$

H. Definition 2.8

Let 'G' be a group and 'H' be a normal subgroup of G. Then $Cv_{\frac{G}{H}}: \frac{G}{H} \to [I]$ can be viewed by $Cv_{\frac{G}{H}}(xm^*+cH) = \Delta(xm^*+c,h)$, for all $x \in G$ and $h \in H$.

III. STRUCTURES OF VARIOUS CHARACTERISATIONS

A. Proposition 3.1:

Let $j_H \in cv(HM^*)$ and cv be similar co-norm. Then $j_{\frac{G}{H}} \in cv\left(\frac{G}{H}\right)$.

Proof: Let
$$xH$$
, $yH \in \frac{G}{H}$ and $j_H \in cv(HM)$.
Then, $j_{\frac{G}{H}}(xm^*+cHym^*+cH) = j_{\frac{G}{H}}(xym+cH) = \Delta(xym+c,h)$
 $= cv(j_H(xym+c), j_H(h))$
 $\leq cv(cv(j_H(x), j_H(y)), j_H(h))$
 $= cv(cv(j_H(xm+c), j_H(ym+b)), cv(j_H(h), j_H(h)))$
 $= cv(cv(j_H(xm+p), j_H(h)), cv(j_H(ym^*+c), j_H(h)))$
 $= cv(\Delta(x, h), \Delta(y, h))$
 $= cv\left(\frac{j_{\frac{G}{H}}(xHm+c), j_{\frac{G}{H}}(yHm+c)}{\frac{j_{\frac{G}{H}}(yHm+c)}{\frac{j_{\frac{G}{H}}(xH)^{-1}}{\frac{j_{\frac{G}{H}}(x^{-1}m+cH)}{\frac{j_{\frac{G}{H}}(x^{-1},h)}}$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

$$= cv(j_H(x^{-1}m+c), j_H(h)) = cv(j_H(xm+p), H(h))$$

= $w(x, h) = A_{\frac{G}{H}}(xHm+c)$. Therefore, $j_{\frac{G}{H}} \in cv\left(\frac{G}{H}\right)$.

B. Proposition 3.2:

If cv be similar co-norm, then for all $xH \in \frac{G}{H}$, and $n \ge 1$,

(i)
$$j_{\frac{G}{H}}(H) \leq j_{\frac{G}{H}}(xHm+c)$$

(ii)
$$j_{\frac{G}{H}}(xHm+c)^{n} \leq j_{\frac{G}{H}}(xHm*+c)$$

(iii)
$$j_{\frac{G}{H}}(xHm*+c) = j_{\frac{G}{H}}(xHm+c)^{-1}$$

Proof: Let $xH \in \frac{G}{H}$, and $n \ge 1$,

From Proposition 3.1, we have that $j_{\frac{G}{H}} \in cv\left(\frac{G}{H}\right)$

(i)
$$j_{\frac{G}{H}}(H) = j_{\frac{G}{H}}(xx^{-1}Hm^* + cp)$$
$$= j_{\frac{G}{H}}(xHx^{-1}Hm + p)$$
$$\leq cv \left(j_{\frac{G}{H}}(xHm^* + p), j_{\frac{G}{H}}(x^{-1}Hm + p) \right)$$
$$\leq cv \left(j_{\frac{G}{H}}(xHm^* + c), j_{\frac{G}{H}}(xHm + c) \right)$$
$$= j_{\frac{G}{H}}(xHm^* + c)$$

(ii)
$$j_{\frac{G}{H}}(xHm^{*}+c)^{n} = j_{\frac{G}{H}}m^{*} + p(xHm^{*}+p, xHm^{*}+p, xHm^{*}+p$$

C. Proposition 3.3:

Let $j_{\frac{G}{H}}$ be a uncertainty parameterised set of a finite group $\frac{G}{H}$ and 'cv' be similar co-norm. If $j_{\frac{G}{H}}$ satisfies 2.6, then

$$\mathbf{j}_{\frac{G}{H}} \in cvF\left(\frac{G}{H}\right).$$

Proof: Let $xHm^* + c \in \frac{G}{H}$, $x \notin H$.

Since, $\frac{G}{H}$ is finite, xH has finite number, say n>1.

So,
$$(xHm^*+c)^n = H$$
 and $x^{-1}H = x^{n-1}H$.
Now by using (i) occurrence same, we have that
 $j_{\frac{G}{H}}(x^{-1}Hm+c) = j_{\frac{G}{H}}(x^{n-1}H) = j_{\frac{G}{H}}(x^{n-2}xH)$
 $\leq cv\left(j_{\frac{G}{H}}(x^{n-2}Hm), j_{\frac{G}{H}}(xHm+c)\right)$
 $\leq cv\left(j_{\frac{G}{H}}(xHm^*+c), j_{\frac{G}{H}}(xHm^*+c), j_{\frac{G}{H}}(xHm^*+c), \dots, n \text{ times}\right)$
 $= j_{\frac{G}{H}}(xHm^*+c).$

IV. CONCLUSION

Main part of this uncertainty has been discussed with its application

REFERENCES

- [1] M. T. Abu Osman, On some products of fuzzy subgroups, Fuzzy Sets and Systems, 24 (1987), 79-86.
- [2] J. M. Anthony and H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl., 69(1979), 124-130.
- [3] I. Beg and S. Ashraf, Fuzzy Relations, Lambert Academic Publisher, Germany, 2009.
- [4] I. J. Kumar, P. K. Saxena and P. Yadava, Fuzzy normal subgroups and fuzzy quotients, Fuzzy Sets and Systems, 46(1992), 121-132.
- [5] N. Kuroki, Fuzzy congruences and Fuzzy normal subgroups, Inform. Sci., 60(1992), 247-361.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)