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I. INTRODUCTION 
In various algebra, a normal subdivision group is a subgroup that is invariant under opposition by members of the group of 
which it is a part. Alternatively a subgroup H of a group G is normal in G if and only if eH = He for all e in G [4]. For centuries 
uncertain theory[5] and error study have been the only models to treat imprecision and uncertainty in [3]. Even though [2] 
recently a lot of new models have been analysed for handling incomplete information. In this article, we obey the direct product 
form of uncertainty function. 

II. PRELIMINARIES 
A. Definition 2.1: 
A uncertainty subset of G, we mean a function cv IG : The set of all uncertainty subsets of G is known the I-power set of G 

and is denoted by .GI A uncertainty combination, on G we mean a map IGGcv :   Denote by  ,GFR the set of all 
uncertainty relations on G. 

B. Definition 2.2: 

Let   .,, 21 GyxandGFcvcv R  we set  
(i)     yxcvyxcvifonlyandifcvcv ,, 2121   

(ii)    .,, 2121 yxcvyxcvifonlyandifAcvcv   

C. A Co-norm S is a map IIIcv :  having the following Rules: 

     elementneutralxpxmcv  0,*cv1  

       tymonotonicizyifzxcvcympxmcv  ,*,*cv2  

       itycommutativxycvcympxmcv ,*,*cv3   

          Izyxallforityassociativzcymxcvcvzpymcvxcv  ,,,*,,*,cv4  

D. Definition 2.4: 
Let ‘j’ be a uncertainty parameterised subset of a group G, then ‘j’ is called a uncertainty parameterised subgroup of G under a 
co norm  (S- uncertainty parameterised subgroup) if and only if for all ., Gyx   

(i)        yjxjcvcxymcv ,*   

(ii)    .*1 xcvcmxcv   
Denote by cv(G), the set of all co norm- uncertainty parameterised subgroup of G. 
Example 2.5:  Let  iiG  ,1,,1 be a group with respect to . Define uncertainty subset  IGcv : as 
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E. Definition 2.5: 
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F. Definition 2.6: 
A uncertainty parameterised relation  IGroupGroupcv : on a group G is a S- uncertainty parameterised  
combinations on G if the following conditions are satisfied.  

  0,*)(  xpxmcvi  

   xycvypxncvii ,,*)(   
 

 
G. Example 2.7: 

Let   ,ZroupG be a group of integer numbers. Set  IZZcv  **:  by  


 


otherwisecdm

yxif
yxcv

,/*
,0

,  

H. Definition 2.8 

Let ‘G’ be a group and ‘H’ be a normal subgroup of G.  Then  I
H
Gcv

H
G :  can be viewed by 

    .,,** HhandGxallforhcxmcHxmcv
H
G   

III. STRUCTURES OF VARIOUS CHARACTERISATIONS 
A. Proposition 3.1: 

Let  *jH HMcv  and cv be similar co-norm.  Then .jG 
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Gcv
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Proof:  Let  .j, H HMcvand
H
GyHxH   

Then,      hcxymcHxymcHcHymxm
HH

,.j**j GG   

       hjcxymjcv HH ,  

          hjyjxjcvcv HHH ,,  

          hjhjcvbymjcxmjcvcv HHHH ,,,   

          hjcymjcvhjpxmjcvcv HHHH ,*,,   

    hyhxcv ,,,   
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    hjcmxjcv HH ,1        hpxmjcv HH ,  

   cxHmAhxw
H
G  , .Therefore, 
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B. Proposition 3.2: 

If cv be similar co-norm, then for all ,
H
GxH  and ,1n  

(i)    cxHmH
HH

 GG jj  

(ii)    cxHmcxHm
H

n

H

 *jj GG  

(iii)     1
GG j*j  cxHmcxHm
HH

 

Proof:  Let ,
H
GxH  and ,1n  

From Proposition 3.1, we have that 
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C. Proposition 3.3: 

Let
H
Gj be a uncertainty parameterised set of a finite group 

H
G

and ‘cv’ be similar co-norm.  If 
H
Gj satisfies 2.6, then 
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Proof:  Let .,* Hx
H
GcxHm   

Since, 
H
G

is finite, xH has finite number, say n>1.   

So,   HcxHm n * and .11 HxHx n   
Now by using (i) occurrence same, we have that  
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IV. CONCLUSION 
Main part of this uncertainty has been discussed with its application 
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