

3 Issue I May 2015

www.ijraset.com Volume 3, Special Issue-1, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
117

A Dynamic Approach for Frequent Pattern
Mining Using Database Characteristics

Iona Sudheendran1, Ganesh Kumar R2
1,2Department of Computer Science and Engineering, Christ University, Bangalore, India

Abstract— Association rule mining is one of the important tasks in data mining. The task to find the frequent patterns is
playing an essential role in mining associations and many other interesting features among the variables in the transactional
database. But this task is computationally intensive and uses quite a large amount of memory. There are many elements that
involve the functioning of a frequent pattern mining algorithm. One of the factors that have a significant effect is the
characteristics of the database being analysed. The popular algorithm works differently on sparse and dense database. Two
algorithms are being applied to the database according to the data characteristics of the dataset. FEM(FP-Tree and Eclat
Method) employs a fixed threshold as a switching condition between the two mining strategies whereas DFEM(Dynamic FP-
Tree and Eclat Method) applies a threshold dynamically at runtime to efficiently fit the characteristics of the database
during the mining process. The performance of these algorithms is also compared with other efficient algorithms.
Keywords— Data Mining, Association Rule Mining, Frequent Patterns, Frequent Pattern Mining Algorithm.

I. INTRODUCTION
One of the important tasks in data mining is association rule mining, which focuses on finding rules that specify the occurrence
of the items in the subsets in databases. [1] Frequent pattern mining is an important task, used to find the different types of
relationship among variables in large database. Its main focus is to search for itemsets, sub sequences that co-occur with a
minimum frequency greater than the user-specified support count. Apriori, FP-growth, Eclat are some of the widely used
algorithms. Apriori algorithm uses the property that an itemset occur frequently if and only if all of its sub-items are frequent. It
utilizes a level-wise or breadth-first approach of the itemset search space which significantly prunes all the superset. It also
avoids the generation of any candidate generation that has any infrequent subset.FP-growth indexes the database for fast
computation of the support count via the use of a data structure called the frequent pattern tree or the FP-tree, it then recursively
mines these trees to find the frequent itemset [2]. Counting the support count can be improved significantly if the database is
indexed in such a way that it allows fast frequency computations. In level-wise approach, to compute the support count, it is
needed to generate subsets of each transaction and check if they exist in the prefix tree. Unlike the level-wise approach Eclat
algorithm uses the vertical TID list to find the frequent itemset by intersecting these TID list and then computing their resultant
support count [5]. From various experiments performed on different databases it is proven that the ARM methods worked well
for a peculiar type of databases [5], [2], [6], [7]and [4]. The methods either worked for sparse or dense database and poorly on
both. In this paper we discuss two efficient algorithms , FEM (FP-growth &Eclat Mining) and DFEM (Dynamic FEM) which is
a combination of FP-growth and Eclat algorithm [8] and [9]. It uses FP-tree to store the database compactly. The main feature of
these algorithms is that they dynamically switch between the two algorithms by considering the data characteristics. If the
conditional base is smaller than it uses the TID-list for mining, else it uses the FP-growth. The switching decisions are made
based on the threshold k whose value is dynamic and evaluated during runtime.

II. BACKGROUND
In this section, we discuss the problem statement, review FP-growth and Eclat mining and analyse their different aspects like
strength and weaknesses.

A. Problem Statement
The mining problem can be stated as follows: Let I = { i1,i2,.....in} be the set of all unique items present in the database D. The
support count of an itemset X in database D is the number of transactions in D that contain X. An itemset k having support
count α is said to be frequent if α is greater than or equal to the user specified minimum support count. The confidence of a rule
is the conditional probability that a transaction contains Y given that it contains X. Given a database and a user specified
minimum support count, the task is to find sets of all frequent item sets in the database D. For example given a dataset in Table
1 and minimum support count = 25%, the 1-frequent itemset includes a,b,c,d,e where as f is infrequent as the support count is
11%. Similarly the 2-frequent itemset and 3-frequent itemsets are computed.

www.ijraset.com Volume 3, Special Issue-1, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

118

TABLE 1: DATASET WITH MINIMUM SUPPORT COUNT = 25%
TID Items Sorted Items
1 b,d,a a,b,d
2 c,d,b b,c,d
3 c,d,a,e a,c,d,e
4 d,a,e a,d,e
5 c,d,a a,c,d
6 c,a,d a,c,d
7 f
8 b,d,a a,b,d
9 c,a,b,e a,b,c,e

B. FP-growth algorithm
It is a very efficient algorithm proposed by Han et al. [2] for finding frequent patterns. It uses the data structure called FP-tree
(Frequent Pattern tree) to discover the patterns that occur frequently. This tree is an advanced prefix-tree structure which
considers the database horizontally and efficiently compresses and stores data in the memory. The tree consists of a root node
which is usually kept as null, and leaf nodes that consists of the items and a header table that consist of the frequent item and its
support count. It then mines the tree recursively to find the frequent patterns without generating a large number of candidates.
This when compared to Apriori , it performs better in terms of efficiency. When the database is dense or the minimum support
count is set to very low value the number of frequent patterns generated is very large. Thus, the cost for generating a large
number of frequent patterns results in performance degradation. In such cases, it's better to use Eclat [4] and [2].

Figure 1. FP-tree constructed from the dataset in Table 1

C. Eclat algorithm
Eclat mining algorithm is also a well-known algorithm for mining frequent patterns developed by Zaki et al. [3]. It makes use of
a data structure called TID-list (transaction id list). It contains the IDs of the transaction of a particular item or an itemset. This
list is used to represent the database in vertical format. Therefore, it deploys depth-first search strategy. This algorithm scans the
database twice. In the first scan all the frequent items are been discovered and in the second scan, it generates the TID-list of
frequent items. This algorithm will then organize the itemsets into disjoint equivalence classes according to the prefixes. By
creating the TID-list it is easier to find the support of the candidate itemset as it can be computed by simply intersecting the
TID-list of the two component subset. The resultant TID-list can be checked easily to find whether it is frequently occurring or
not.

Figure 2. Bit vector generated from the dataset in Table 1

www.ijraset.com Volume 3, Special Issue-1, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

119

D. Mining approach for Frequent Pattern Mining
The databases consist of a group of items occurring very frequently that the same items. This will occur more in dense database
and less in sparse. Removal of the less frequent item from the database will give the database the dense characteristics and the
removed portion sparse characteristics. In the FP-tree the root node contains the most frequent item and it is at the top most
level, whereas the rest of the nodes are added into the tree as the leaf nodes. Finally the tree will contain all the items in the
descending order of the frequency of occurrence.
In this paper, we discuss the algorithm that is suitable for mining databases considering the data characteristics. The algorithm
will adapt itself to the sparse and dense characteristics of the data set under consideration. From previous studies it is clear that
sparse data can be best handled by FP-growth mining and the dense data can be handled by Eclat algorithm. The minimum
threshold that decides whether to construct FP-tree or to construct Bit vector is calculated dynamically.

Figure 3. Mining model for frequent pattern mining

E. Overview of the algorithm
DFEM combines FP-growth and Eclat algorithm strategies for mining. FP-tree is used to store the database in the memory in a
compact manner. During the mining process this tree is being used recursively to find the frequent pattern. The switching
between the FP-growth and Eclat algorithm happens based on the threshold being defined. The algorithm consists of four major
parts:

1) Construction of FP-tree: Database is scanned to find all the frequent items and the header table is created. The database is

scanned once more to get the frequent items such that the FP - tree can be constructed.

Construction of FP-tree
Input: Database and the min-support
Output : Complete set of frequent patterns
Step 1: Scan the database and find the frequent items.
Step 2: Scan the database to construct FP-tree
Step 3: Call FP-tree mining.

2) Mining FP-tree: It uses the FP-growth algorithm to find all the frequent patterns from the conditional tree constructed

recursively. Before the construction of the conditional tree the size is to be verified. If the size is small then Bit Vector will
be generated, otherwise the FP - tree will be created.

www.ijraset.com Volume 3, Special Issue-1, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
120

FP-tree mining
Input : Conditional FP-tree ,min-support , suffix
Output: Set of frequent patterns
Step 1: If the FP-tree consists only single path P
Step 2: Then for each combinations of x of the nodes in P
Step 3: Output = x U suffix
Step 4: else for each item y in the header table of FP-tree
Step 5: Output= y U suffix
Step 6: Construct y conditional pattern base C
Step 7: size = number of nodes in the y
Step 8: if size >k
Step 9: then construct y’s conditional FP-tree and call FP-
tree mining again
Step 10: else transform C into bit vector V and weight
vector W and call Bit Vector mining.

3) Mining Bit Vector: It will collect all the TID bit vector from the database and searches for frequent pattern by logically

ANDing these bit vectors recursively. The new patterns created by concatenating the suffix pattern from the previous steps.
Bit Vector mining
Input : Bit vector V, weight vector W, suffix, min-support
Output: Set of frequent patterns.
Step 1: Sort V in descending order of its item support.
Step 2: For each vector vi in V
Step 3: Output= vi U suffix
Step 4: For each vector vk in V, k<i
Step 5: uk=vi AND vk
Step6: supk= support of uk based on w
Step7: If all uk in U are identical to vi
Step 8: Then for each combination x in U output1 = x U
output
Step 9: else if U is empty call Bit vector mining again.

4) Updating the threshold: Let k be the threshold being defined to find the frequent patterns being generated by FP-tree mining

where k={k0,k1...kn} be the set of all values of k being applied. Ri is the ratio indicating the difference between the previous
pattern Pi-1 and the current pattern Pi and is computed as Ri= Pi-1/Pi,(i=1...N). The best k will satisfy the condition Ri<2	∋(∄
Rj> 2,∀j>) [8] [9].

Update threshold
Input : NewPattern and Size
Output : updated value of threshold K
Step 1: If UpdateK is called for the first time then
Step 2: Create an array P with N elements
Step 3: Initialize the array to zero
Step 4: For i=0 to N-1
Step 5: If Size >i*size then Pi=Pi+NewPattern
Step 6: else exit loop
Step 7: K=0
Step 8: For i=N-1 to 1
Step 9: If Ri>=2 then K=(i+1)*Step and exit loop.

www.ijraset.com Volume 3, Special Issue-1, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

121

III. EXPERIMENTAL RESULTS
The algorithm is being benchmarked with popular algorithm such as Apriori, FP-growth, and Eclat. The performance
comparison of the algorithm shows that the algorithm is more stable and performs better that the popular algorithms. The
dataset which is used for comparing the performance are accident dataset which is a moderate type of dataset and retail dataset
which is a sparse dataset. Apriori runs the slowest when compared to the rest of the algorithms on both the datasets. Eclat
performs better for the accident dataset and runs slower for retail dataset, where as FP-growth works fairly better for retail when
compared to Eclat. But the algorithm discussed in this paper works better when compared to all the algorithms.

Figure 4. Execution time of DFEM and other algorithms with accident(moderate) dataset.

Figure 4. Execution time of DFEM and other algorithms with retail(sparse) dataset.

IV. CONCLUSION

In this paper, we discussed about DFEM algorithm, the dynamic way in which it computes the threshold according to the
characteristics of the dataset and then adapts itself. It combines features of the two major algorithm that is the FP-growth
algorithm and Eclat algorithm. The switching between the algorithms is being decided based upon the threshold value. The
future work includes improving the efficiency of Eclat algorithm by shrinking the size of the intermediate TID sets.

REFERENCES
[1] R. Srikant R. Agrawal, "Fast algorithms for mining association rules," in Proc. of the Int. Conf. on Very large databases, 1994, pp. 487-499.

[2] J. Pei, Y.Yin J. Han, "Mining frequent patterns without candidate generation," in In Proc. of the 2000 ACM Sigmod Int. Conf. on Mgt. of Data. vol 9. issue 2,
2000, pp. 1-12.

[3] S. Parthasarathy, M. Ogihara,W.Li M. Zaki, "New algorithms for fast discovery of association rules," in In Proc. of Knowledge Discovery and Data Mining ,
1997, pp. 283-286.

[4] J.Zhu G. Grahne, "Efficiently using prefix-trees in mining frequent itemsets," in In Proc. of the 2003 Workshop on frequent pattern mining implementations,
2003, pp. 132-132.

[5] B. Racz, "Nonordfp: An FP-growth variation without rebuilding the FP-tree," in In Proc. of The IEEE ICDM workshop pn frequent itemset mining
implementations, 2004.

[6] J.Pei et al, "Hmine:Hyper-structure mining of frequent patterns in large databases," in In Proc. of the IEEE Int. conf. on data mining, 2001, pp. 441-448.

[7] G. Alaghband L. Vu, "A fast algorithm combining FP-tree and TID-list for frequent pattern mining," in In Proc. of the 2011 Int. Conf. on Inf. and Knowledge
Engineering, 2011, pp. 472-477.

[8] G. Alaghband L. Vu, "Mining frequent patterns based on data characteristics," in Int. Conf. on Information and Knowledge Engineering, 2012, pp. 369-375.

[9] Gita Alaghband Lan Vu, "An Efficient Approach for Mining Association Rules from Sparse and Dense Databases," in IEEE , 2014.

[10] Frequent Itemset Mining Implementations Repository,Workshop on Frequent Itemset Mining Implementation,(2003-2004),Available at http://fimi.ua.ac.be

