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Abstract:  This work presents analysis of Rolle’s theorem, generalized Rolle’s theorem and mean value theorem. These theorems 
are used to calculate the values and their accuracy is observed. Accuracy is analyzed by comparing the actual value with the 
values obtained by the theorems.  

I. INTRODUCTION 
Rolle’s theorem was discovered by an Indian mathematician Bhaskara II (1114-1185).[1] However, the theorem is named after 
Michel Rolle, Rolle’s 1691 proof covered only the case of polynomial functions. This proof did not used the methods of differential 
calculus. This was considered a false idea at a point of time in his life. It was first proved by Cauchy in 1823 which was used as a 
corollary of the proof of mean value theorem. The name of Rolle’s theorem was first used by Moritz Wilhelm Drobisch from  
Germany in 1834 and by Giusto Belavitis from Italy in 1846. Mean value theorem’s special case was first explained by Parmeshvara 
(1370-1460)[2] . This was described from the Kerala School of Astronomy and mathematics in India. The modern form of Mean 
Value Theorem was stated and proved by Augustin Louis Cauchy in 1823.[5] In this both the Rolle’s theorem and the mean value 
theorem are compared. 

A. Rolle’s Theorem 
Rolle’s Theorem or Rolle’s lemma states that for any continuous, differentiable function that has two equal values, at two distinct 
points, then the function must have a point on the function where the first derivative is zero, i.e. 
1) If f(x) is continuous in a≤x≤b.  
2) f’(x) exists in a<x<b and  
3) f(a)= f(b)=0. 
Then there exists at least one value of x, say ‘c’, such that, f’ (0) =0, a<0<b. 

 
Fig 1.1. Graphical representation for Rolle’s Theorem 

B. Generalized Rolle’s Theorem 
Let f(x) be a function which is n times differentiable in [a, b]. If f(x) vanishes at (n+1) distinct points x0, x1, x2, ……., xn in (a, b), 
then there exists a number c in (a, b) such that fn(c) =0. It follows that between any two zeroes of the polynomial f(x) of degree ≥2, 
there lies at least one zero of the polynomial f’(x).[4] 
( ) ( )   ≤0, 
Hence, 
f’(c) = lim → f(c + h)− ( )  ≤   
similarly, for h<0 the inequality sign gets reversed because now the denominator becomes negative and we get  
( ) ( )  ≥ 0, 
Hence,  
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F’(c) = lim푓( 푐 + ℎ)− 푓(푐)/ℎ≥ 0 
Where the limit tends to plus infinity. 
Thus, when the right infinity limit and left infinity limits agree then derivative of function (f) at c must be zero. It follows that 
between any two zeroes of the polynomial f(x) of degree ≥ 2, there lies at least one zero of the polynomial f’(x).[3] 

C. Mean Value Theorem 
If a function is continuous on the closed interval [a,b] and differentiable on the open interval (a,b) then there exists a point c in the 
interval (a,b) such that f’(c) is equal to the functions average rate of change over (a,b) i.e. if f(x) is continuous in [a,b] and f’(x) 
exists in (a,b) then there exists at least one value of function say c between a and b such that 
f’(c)= ( ) ( ) a<c<b 

 
Fig2.1. Graphical representation of mean value theorem. 

D. Proof of Mean Value Theorem  
Let g(x) =f(x) – rx, where r is a constant. As, f is continuous [a,b] and differentiable on (a,b) , the same is satisfied for function  g. 
we now take r so that function g satisfies the Rolle’s theorem.[7] 
g(a)= g(b) <-> f(a) -ra = f(b) – rb 
<-> r(b-a) = f(b)- f(a) 
r = ( ) ( ) 
By Rolle’s theorem as function g is differentiable and g(a) =g(b), there is some c in (a, b) for which g’(c) =0, and it satisfies the 
equality g(x)= f(x) – rx then,  
g’(x)=f’(x) -r  
g’(c) =0 
g’(c) =f’(c) -r =0  
f’(c) =r = ( ) ( ) 

E. For Example 
f(x)= x2-5x+4 [1,4] 

F. Rolle’s Theorem 
Function f(x)= x2-5x +4 is a polynomial and is therefore continuous for all values of x, also the function f(x) is differentiable[4]. 
f’(x) = 2x -5 
here, f’(x) is also continuous function. 
Now,  
f(x)=x2-5x+4 
f (1) = (1)2- 5(1) +4 
f (1) = 0 
f (4) = (4)2- 5(4) +4 
f (4) =0 
here f (1) = f (4) =0 
both points f (1) and f (4) are at same height. In order to find the slope, equate the derivative of the function equal to zero. 
Thus, f’(x)= 2x-5 
2x -5 = 0 
X= 2.5 lies in the interval [1,4] 
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G. Mean Value Theorem 
f(x)= 4x3-8x2+7x-2 in the interval (2,5) 
f (2) = 4(2)3 – 8(2)2 + 7(2) -2  
f (2) = 12 
f (5) = 4(5)3- 8(5)2 – 7(5) -2  
f (5) = 333 
f’(c) = ( ) ( )

 
 

f’(c)= 12c2-16c +7 
12c2 -16c +7=   
12c2 -16c+7= 321/3 
12c2-16c +7=107 
12c2-16c-100=0 

c =
+16 ± 16 − 4(12)(−100)

2(12)  

C= -2.2961, 3.6294 
Therefore, c=3.6294 lies in the interval (2,5) 
 

II. CONCLUSION 
Rolle’s theorem has three hypotheses while the mean value theorem has only two hypotheses. In Rolle’s theorem the slope of secant 
is not necessarily zero. Both the theorems i.e. the Rolle’s theorem and the mean value theorem state that at some point the slope of 
secant is same as the slope of tangent connecting the points (a, f(a)) and (b , f(b)), also the mean value theorem is valid for 
continuous functions, over a closed interval [a,b], and differentiable over the open interval (a,b). The proofs are simplest to solve if 
we derive Rolle’s theorem first and using this proof to prove mean value theorem. Beyond this Rolle’s theorem is not useful which 
means that the mean value theorem can handle every other use. Though it is also true that the mean value theorem is more intuitive 
and perplexing as compared to the Rolle’s theorem.[6] 
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