

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 3 Issue: V Month of publication: May 2015 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

A Survey Paper on Association Rule Mining using Fuzzy Logic

Mimanshu Gupta¹, Beerendra Kumar², Rohit Miri³

¹ College of Science and Engineering, Department Of Computer Engineering, India ² College of Science and Engineering, Department Of Computer Engineering, India ³ Dr. C V Raman Universities, Department Of Computer Engineering, India

Abstract - To study the Fuzzy Logic and Data mining Association rules from different journals. Our aim is to reduce large data sets to smaller data set by using or applying fuzzy logic association rules and also to forecast from large data set. Data plays important role in every field. Without it we can't programme anything. It means without any variable we can't performed any function or methods. We need data sets before doing the research work. Data must be real or actual data. We can integrate these two technologies i.e Data Mining and Fuzzy Logic.

Keywords – Fuzzy Logic, Triangular Function and Data Mining

I. INTRODUCTION

Now a day's fuzzy logic and data mining plays an important role on the field of research. The past data tells the future result of forecast. If we have past data then we can find many interesting things. The interesting things may be pattern data, prediction of data or association dependence among attributes or data sets. Before we can build or develop algorithm the survey of literature is very important. The literature reviews tells the past research work and technology used. We can get idea to improve the past work or way to do research. So we are performing the survey of fuzzy mining association rules. We have using the two latest technology Data mining and Fuzzy Logic. Fuzzy Logic is used in the field of Engineering application in Washing Machine, Boiler Controller, Electrical controller and many other device controller. It is very important to read the published research paper before preparing the own research paper. We get the new or latest ideas in it. Some of the published research paper also provided the future work to the reader. Researcher gets the objective or aim of their research paper. Now a days every company or industries have their own database whether it is small, medium or large. From their data we can predict the future requirement or result. Data mining technics itself categorize in different ways i.e Classification techniques, clustering Techniques, association Rules, Time series data etc. where we dig out the interesting criteria from the huge database or data warehouse.

II. LITERATURE REVIEW

S.No.	Authors	Heading	Work Done	Technology Used	Future work /Drawback	Publication	Year

Volume 3 Issue V, May 2015 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

1.	J. Preethi	Temporal	She has done comparison of	Genetic and	Data size	Proceedings of	Februa
		Outlier	efficiency by using two	fuzzy based	increases the	International	ry
		Detection	technologies. First	mining	complexity of	Conference on	2013
		using Fuzzy	technology apply mining	algorithm.	both the	Optical	
		logic	association rule by using	_	technology.	Imaging	
		and	genetic algorithm. The			Sensor and	
		Evolutionar	second technology used is			Security,	
		у	fuzzy mining association			Coimbatore,	
		Computatio	rule. They compared both			Tamil Nadu,	
		n	the technology and found			India, July 2-3,	
			that the accuracy or			2013	
			efficiency of fuzzy logic is				
			more as compare to genetic				
			algorithm.				
2.	Jesús	Learning the	Authors are try to define the	Genetic and	The learning	(Science	2008
	Alcalá-	membership	range or domain of	fuzzy based	scheme	Direct)	
	Fdez*,	function	linguistic variable of fuzzy	mining	together with		
	Rafael	contexts for	logic by using genetic	algorithm.	the 2-tuples		
	Alcalá,	mining	algorithm. It is based on the		linguistic		
	María	fuzzy	2-tuples linguistic		representatio		
	José	association	representation model i.e age		n model and		
	Gacto,	rules by	and weight. allowing us to		the used		
	Francisc	using	adjust the context associated		fitness		
	o Herrera	genetic	to the linguistic term		function		
		algorithms	membership functions		offers a good		
					mechanism to		
					obtain MFs		
					with a good		
					trade-off		
					between		
					fuzzy		
					supports and		
					suitability,		
					allowing us		
					to mine out a		
					larger		
					number of		
					interesting		
					fuzzy		
					association		
					rules.		

Volume 3 Issue V, May 2015 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

3.	Nandita	Association	They used fuzzy mining	FP-growth		International	August
	Rane1,	Rule Mining	association rule to early	association		Journal Of	2013
	Madhuri	on Type 2	detection of diabetics. they	rule		Engineering	
	Rao	Diabetes	used large data sets from			And Computer	
		using	medical center and perform			Science	
		FP-growth	data mining association rule				
		association	on this data sets. The				
		rule	method not only can find				
			direct factors				
			but also find indirect factors				
			that cause type 2 diabetes				
			mellitus				
			which may help health				
			doctors to explore their data				
			and				
			understand the discovered				
			rules better.				
4.	Zaiuddin	Research on	Authors try to explore the	Fuzzy	They	Advances in	2012
	Shahid	Association	application of fuzzy mining	techniques	describe the	Computational	
	kammal	Rule Mining	association rule. They		fuzzy mining	Mathematics	
	Khaiuz		explained the usefulness of		association	and its	
	Zaman		important of association rule		rule.	Applications	
	Khan,		from last 15 years. Much			(ACMA)	
	Muham		research has been done on				
	mad Ijaz		mining association rule. On				
	Khan		the field of latest research it				
			plays vital role for				
			prediction of data set,				
			association rule among the				
			attributes. Uncertainty				
			condition has been solved				
		1	here many a transmission and the second	1	1	1	
			by using fuzzy association				

Volume 3 Issue V, May 2015 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

5	L. Cl. Ser			<u>Curlating</u>	T1	2000	2011
5.	Jr-Shian	CPDA	They defined the domain of	Cumulative	They uses the	2009	2011
	Chen $I \sqcup$,	Based	fuzzy linguistic variable by	probability	AprioriTid	International	
	Hung-	Fuzzy	using cumulative probability	distribution	data mining	Conference on	
	Lieh	Association	distribution approach	approach	association	Machine	
	Chou2,3,	Rules for	(CPDA) by using mean and	(CPDA).	rule to find	Learning and	
	Ching-	Learning	standard deviation.		out the	Computing	
	Hsue	Achievemen			frequent item	IPCSIT vol.3	
	Cheng2,	t			set by	(2011) ©	
	Jen-Ya	Mining			reducing	(2011) IACSIT	
	Wang				large data set	Press,	
					into smaller	Singapore	
					data set. They		
					can improve		
					their		
					performance		
					by using fast		
					data mining		
					association		
					algorithm		
					like		
					TRApriori		
					HRApriori		
					inu prom		
6.	E.	A Better	They have proposed three	AprioriTID,	Authors of	National	2008
	Ramaraj,	Performed	mining association rule. i.e	TRApriori,	this paper	Conference	
	Κ	Transaction	AprioriTID, TRApriori,	HRA	suggested for	INDIACom	
	Ramesh	Reduction	HRA. They have reduces		its future		
	Kumar,	Algorithm	the time complexity of		work. For		
	Ν	for Mining	algorithm in efficient way.		further		
	Venkates	Frequent	Among three the TRApriori		efficiency we		
	an	Item sets	is very fast data mining		can use Eclat		
		from large	association algorithm.		algorithm.		
		voluminous			- U		
		Database					

Volume 3 Issue V, May 2015 ISSN: 2321-9653

IC Value: 13.98 International Journal for Research in Applied Science & Engineering Technology (LIRASET)

		1		/		1	T
7.	Tzung-	А	In this paper, the authors	AprioriTid	Now a days,	Science Direct	2004
	Pei	fuzzy Aprio	are concentrated on reduced	and Fuzzy	there are fast		
	Hong,	riTid mini	computational time by using	Logic	data mining		
	Chan-	ng algorith	fuzzy mining association		association		
	Sheng	m with	rule .		rule are		
	Kuo,	reduced			available.		
	Shyue-	computation			They uses		
	Liang	al time			triangular		
	Wang				membership		
					function.		
					They assume		
					the range of		
					the linguistic		
					variable.		
					There will be		
					some		
					mathematical		
					calculation.		

III. CONCLUSION

In this paper we have presented the literature review in the field of fuzzy mining association rules using different technology and found that still we can predict the result from large data sets. Some of the paper presented strong logic for the same. Many papers have given their future work to improve the performance of their paper. We can also reduce the large data set to smaller set from the past research work. From the above survey paper we can predict the early diabetes of the person.

REFERENCES

[1] J.Preethi "Temporal Outlier Detection using Fuzzy Logic and Evolutionary Computation" Proceedings International Conference on Optical Imaging Sensor and Security, Coimbatore, Tamil Nadu, India, July 2-3, 2013.

[2] Jesús Alcalá-Fdez*, Rafael Alcalá, María José Gacto, Francisco Herrera "Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms (Science Direct) 2008.

[3] Ziauddin, Shahid Kammal Khaiuz Zaman Khan, Muhamm "Research on Association Rule Mining" Advances in Computational Mathematics and its Applications (ACMA) ,2012

[4] Nandita Rane1, Madhuri Rao "Association Rule Mining on Type 2 Diabetes using FP-growth association rule International Journal Of Engineering And Computer Science, August 2013.

[5] Mohammed Al-Maolegi, Bassam Arkok "An improved apriori algorithm for Association rules" international journal on natural language computing volume 3 ,no-1 , febuary 2014.

[6] N S Nithya and K Duraiswami "Gain ratio based fuzzy weighted association rule mining classifier for medical diagnostic interface" vol 39 part 1, febuary 2014, pp 39-52.

[7] K Sathesh Kumar and M Hemlatha "An innovative potential on rule optimization using fuzzy artificial bee colony" Research journal of applied science , engineering and Technology. volume 2627-2633 , ISSN:2040-7459, E-issn:2040-7467, April 05 2014.

[8] zhiyong MA, Qingying Qiu and Peieen Feng "CPM algorithm for mining association rules from databases of engineering design+n instances." Journal of information science and engineering vol 30, 463-481 (2014)

[9] Arpna shrivastava , R . C Jain and A K shrivatava "Generating 3rd level association rule using fast apriori implementation." British journal of mathematics and computer science. Volume 4(2):241-251,2014

[10] Neelu khare , neeru adlakha, K R pardasani "An algorithm for mining multidentional fuzzy association rule" international journal of computer science and information security vol 5, no-1 ,2009

[11] Thomas sudkomp "Refinement of temporal constraints in fuzzy association" volume 48(2008) 14 June 2007

[12] Tiberiu Ban, Fuzzy computing for complexity level of evaluation tests. Studia Univ, Babes-Bolai, Informatics, Volume LVIII number1, 2013

[13] -Pei Honga, Chan-Sheng Kuob, Shyue-Liang Wangc "A fuzzy AprioriTid mining algorithm with reduced computational time" Volume 5, Issue 1, December 2004, Pages 1–1

[14] Tzung-pei-Hang, Guo-Cheng lan, Yi-Hsin lin and Shing-tai pan. An effective gradual data reduction strategy for fuzzy item set mining international journal of fuzzy systems, vol 15 no2 June2013.

www.ijraset.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

[15] Usha Rani, R Vijaya Prakkash, Dr Gavardhan, Multi-level association Rules using fuzzy, International journal of emerging technology and advanced engineering. Volume 3, issue 8, August 2013

[16] Ruchi Bhargava, Shrikant lade, Effective positive negative association rule mining using improved frequent pattern tree. International journal of advanced research in computer science and software engineering. Volume 3, issue 4 April 2013.

[17] Dharmendra Kumar, Deepak Bhardwaj rise of data mining: Current and Future application areas. IJCSI international journal of computer science issue vol 8 issue 5 No1 September 2011.

[18] Kanu Patel, Vatsal shal, jitendra patel, jayna donga comparision of various association rule mining algorithm on frequent item sets. International journal of advanced research in computer Science and software engineering Vol-3 issue II Nov 2013.

[19] Jr Shian chen hung lieh chou, Ching Hsue Cheng, jen-nya Wang CPDA Based Fuzzy association rules for learning achievement mining, 2009 international conference on machine learning and computing IPCSIT vol3 (2011) IACSIT PRESS SINGAPUR.

[20] E Ramaraj, K Rameshkumar, N Venkatesan'' A better performed transaction Reduction algorithm for mining frequent item set from large voluminous database'' Volume 5, Issue 1, December2004, Pages1–10

[21] R. Agrawal, T. Imielinksi and A. Swami, "Mining association rules between sets Submitted manuscript 24 of items in large database," The 1993 ACM SIGMOD Conference, Washington DC, USA, 1993.

[22] R. Agrawal, T. Imielinksi and A. Swami, "Database mining: a performance perspective," IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No.6, 1993, pp. 914-925.

[23] R. Agrawal, R. Srikant and Q. Vu, "Mining association rules with item constraints," The Third International Conference on Knowledge Discovery in Databases and Data Mining, Newport Beach, California, August 1997.

[24] R. Agrawal and R. Srikant, "Fast algorithm for mining association rules," The International Conference on Very Large DataBases, 1994, pp.487-499.

[25] A. F. Blishun, "Fuzzy learning models in expert systems," Fuzzy Sets and Systems, Vol. 22, 1987, pp 57-70.

[26] C. H. Cai, W. C. Fu, C. H. Cheng and W. W. Kwong, "Mining association rules with weighted items," The International Database Engineering and Applications Symposium, 1998, pp. 68-77.

[27] L. M. de Campos and S. Moral, "Learning rules for a fuzzy inference model," Fuzzy Sets and Systems, Vol. 59, 1993, pp.247-257.

[28] R. L. P. Chang and T. Pavliddis, "Fuzzy decision tree algorithms," IEEE Transactions on Systems, Man and Cybernetics, Vol. 7, 1977, pp. 28-35. Submitted manuscript 25

[29] M. Delgado and A. Gonzalez, "An inductive learning procedure to identify fuzzy systems," Fuzzy Sets and Systems, Vol. 55, 1993, pp. 121-132

[30] W. J. Frawley, G. Piatetsky-Shapiro and C. J. Matheus, "Knowledge discovery in databases: an overview," The AAAI Workshop on Knowledge Discovery in Databases, 1991, pp. 1-27.

[31] A .Gonzalez, "A learning methodology in uncertain and imprecise environments," International Journal of Intelligent Systems, Vol. 10, 1995, pp. 57-371.

[32] T. P. Hong, C. H. Chen, Y. L. Wu and Y. C. Lee, "Using divide-and-conquer GA strategy in fuzzy data mining", The Ninth IEEE Symposium on Computers and Communications, 2004.

[33] T. P. Hong and J. B. Chen, "Finding relevant attributes and membership functions," Fuzzy Sets and Systems, Vol. 103, No. 3, 1999, pp. 389-404.

[34] T. P. Hong and J. B. Chen, "Processing individual fuzzy attributes for fuzzy rule induction," Fuzzy Sets and Systems, Vol. 112, No. 1, 2000, pp. 127-140.

[35] T. P. Hong and C. Y. Lee, "Induction of fuzzy rules and membership functions from training examples," Fuzzy Sets and Systems, Vol. 84, 1996, pp. 33-47.

[36] T. P. Hong, C. S. Kuo, and S. C. Chi, "Mining association rules from quantitative data," Intelligent Data Analysis, Vol. 3, No. 5, 1999, pp. 363-376. A. Kandel, Fuzzy Expert Systems, CRC Press, Boca Raton, 1992, pp.8-19. Submitted manuscript 26

[37] H. Mannila, "Methods and problems in data mining," The International Conference on Database Theory, 1997.

[38] R. Srikant and R. Agrawal, "Mining quantitative association rules in large relational tables," The 1996 ACM SIGMOD International Conference on Management of Data, Monreal, Canada, June 1996, pp. 1-12.

[39] C. H. Wang, J. F. Liu, T. P. Hong and S. S. Tseng, "A fuzzy inductive learning strategy for modular rules," Fuzzy Sets and Systems, Vol.103, No. 1, 1999, pp.91-105.

Mimanshu Gupta received the B.E. and persuing M.TECH. degrees in Computer Engineering from SR Group of Institution College, Jhansi (UP)

Beerendra Kumar persuing Ph.d. from Bundelkhand University Jhansi. He has received B.Tech. (Bachelor of Technology) degree in Computer Science and Information Technology from Institute of Engineering and Technology, Rohilkhand University, Bareilly (U.P), India in 2006. He has completed his M.Tech. (Master of Technology) in Computer Science from SCS, Devi Ahilya University, Indore, India in 2008. He is associate member of Computer Society of India(CSI). He has seven years of teaching experience. His subjects of interest include Computer Networking, Theory of Computer Science, Data Mining, Operating Systems and Analysis & Design of Algorithms. He has published five research papers in national conferences and six research paper in

international journal. His research areas are Intelligence web Mining, Privacy preserving Data Mining, Secure Multiparty Computations and Neural Networks.

Volume 3 Issue V, May 2015 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

Rohit Miri is currently pursuing Ph.D. and H.O.D of Computer Science and Engineering, Dr. C.V. Raman University, Bilaspur, India. He received his B.E. degree in Computer Science and Engineering from the NIT, Raipur (formally known as Government Engineering College, Raipur) in 2004, and M. Tech degree in Computer Science from College of Engineering, Pune Maharashtra, India. IN 2008 .His research interests include application of Artificial intelligence in robotics, Web Technologies, Data mining & Warehousing , Cellular Technology. He has more than 35 international research papers and more than 5 conference paper.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)