



# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 7 Issue: XII Month of publication: December 2019

DOI: http://doi.org/10.22214/ijraset.2019.12104

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue XII, Dec 2019- Available at www.ijraset.com

A Daviery or Microsoftin Datale Antonna wille

### A Review on Microstrip Patch Antenna with Specific Structure i.e. Circular Patch with Multiple Fused Rectangular Slot

Himanshu Kumar<sup>1</sup>, Dr. Shailendra Singh Pawar<sup>2</sup>, Amitesh Ranjan<sup>3</sup>

1, 3 Scholar (M. Tech, Digital Communication).

Abstract: This paper gives brief over view of the basic features of the Microstrip patch antenna with specific structure i.e. circular patch with multiple fused rectangular slot and then most significantly its development in the recent years The accessibility and enlargement in development of economical, less weight, highly reliable antennas are required for wireless communication, it poses new challenges for the design of antenna in wireless communication. The micro strip patch antenna (MPA) used for these communications, because they will provide high frequency and less bandwidth. This paper presents review of design and simulation of Microstrip patch antenna with specific structure i.e. circular patch with multiple fused rectangular slot. We will also review comparison over conventional circular patch antenna near resonance frequency at 2.4 GHz. Keywords: Microstrip Patch Antenna (MPA), specific structure, Patch

#### I. INTRODUCTION

A Microstrip patch antenna consists of a very thin patch that is very small fraction of a wavelength fabricated over conducting ground plane. There is dielectric between the patch and the ground plane. The patch conductor is generally made up with copper and can be of any shape but for simplification of the analysis, in this project circular patch will be used. One of the important parameters is relative permittivity of the substrate that is used. It is so because the relative permittivity is used to enhance the fringing fields. Microstrip patch antennas primarily radiates because of the fringing fields, this is the field between the edges of the patch and the ground plane. For better antenna performance, a thick dielectric substrate with a low dielectric constant is preferred since it provides better efficiency, larger bandwidth, and good radiation. However, the drawback is a larger antenna size. Thus, design and simulation of Microstrip patch antenna with specific structure i.e. circular patch with multiple fused rectangular slot, substrate with large dielectric constants is used that is less efficient and also have narrower bandwidth. Hence a compromise must be reached between antenna performance and antenna dimension. Here I am presenting the optimized structure of circular patch with multiple fused rectangular slot which performance will be compared with general circular shape structure.

#### II. PROPOSED STRUCTURE

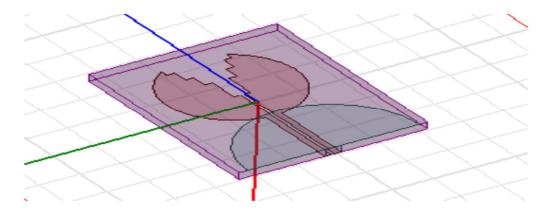



Fig 1. Microstrip patch antenna with specific structure i.e. circular patch with multiple fused rectangular slot

<sup>&</sup>lt;sup>2</sup>Associate Professor, Department of Electronics and Communication Engineering, All Saints College of Technology Bhopal India,



#### International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue XII, Dec 2019- Available at www.ijraset.com

#### III. DESIGN

Step 1:Determine the width of the microstrip patch antenna by equation(1)

$$W = \frac{\lambda 0}{f \circ \sqrt{(\varepsilon r + 1)/2}}$$
(1)

Step 2: Determine effective dielectric constant, Ereff, using equation (2)

$$\operatorname{Ereff} = \frac{(\varepsilon r + 1)}{2} + \frac{(\varepsilon r - 1)}{2} \left[ 1 + 12 \frac{h}{w} \right]^{-\frac{1}{2}}$$
 (2)

Step 3: Calculate the length extension  $\Delta L$ , by using equation (3)

$$\frac{\Delta L}{h} = 0.412 \frac{(\epsilon_{reff} + 0.3)(\frac{W}{h} + 0.264)}{(\epsilon_{reff} - 0.258)(\frac{W}{h} + 0.8)}$$
(3)

Step 4: The patch length of the microstrip antenna is calculated by using equation (4)

$$L = \frac{\lambda 0}{\text{fo}\sqrt{\text{Ereff}}} - 2\Delta L \tag{4}$$

Where the effective length( Leff) of the patch

$$Leff = \frac{\lambda 0}{f \circ \sqrt{\epsilon_{reff}}}$$
 (5)

Step 5: The dimensions of ground is determine by

$$Lg = 6h + L$$

Wg=6h+W

#### IV. LITERATURE SURVEY

| S NO. | Auther & year      | Contribution                 | Technique Used                 | Remark                             |
|-------|--------------------|------------------------------|--------------------------------|------------------------------------|
| 1.    | M T Islam, N       | Design a inverted E- shape   | Particle swarm optimization is | *Bandwidth improve up to 15%       |
|       | Misran, T C Take,  | microstrip antenna for IMT   | used for optimize parameter of | as compare to initial antenna.     |
|       | AUG 2009           | 2000 band.                   | antenna, which is develop in   | *Effect of resonance frequency,    |
|       |                    |                              | MATLAB. IE3D software use      | gain, directivity, return loss not |
|       |                    |                              | for simulation and             | mentioned in this paper.           |
|       |                    |                              | graphmatica use for curve      |                                    |
|       |                    |                              | fitting                        |                                    |
| 2.    | Y. Choukiker, D    | Design a dual band           | Particle swarm optimization is | *return loss obtain at 2.4GHz is - |
|       | Mishra & R K       | microstrip antenna for       | used to optimize geometry      | 43.95 db and at 3.08GHz is -       |
|       | Mishra DEC 2009    | resonance frequency          | parameter for efficient        | 27.4db.bandwidth is 33.54MHz.      |
|       |                    | 2.4GHz and 3.08GHz.          | performance of the antenna.    | *bandwidth is low and return loss  |
|       |                    |                              | IE3D software used for         | is high are drawback of this       |
|       |                    |                              | simulation of antenna.         | antenna.                           |
| 3.    | Renu Nagpal,       | Calculate the parameter of   | Parallel particle swarm        | *Result of parallel particle swarm |
|       | Dhaliwal B.P.Garg, | rectangular using parallel   | optimization(ppso) technique   | optimization (ppso) is more        |
|       | d singh Dhaliwal   | particle swarm optimization. | used to                        | accurate and                       |
|       | DEC 2013           |                              | solved the                     | closed to experimental             |
|       |                    |                              | computationally                | value than particle                |
|       |                    |                              | demanding                      | swarm optimization                 |
|       |                    |                              | optimization problem.          | (pso).                             |
|       |                    |                              | ppso is used to                |                                    |
|       |                    |                              | develop standard               |                                    |
|       |                    |                              | equation for the               |                                    |
|       |                    |                              | calculation of accurate        |                                    |
|       |                    |                              | resonance frequency            |                                    |
|       |                    |                              | for rectangular                |                                    |
|       |                    |                              | microstrip patch               |                                    |
|       |                    |                              | antenna                        |                                    |
| 4.    | Vivek              | Design a microstrip          | Basic antenna design           | *resonance frequency               |
|       | Rajpoot, D K       | antenna for Bluetooth        | from cutting the slot of I     | obtain at 2.4GHz abd band width    |
|       | Srivastava, A K    | and increase in bandwidth.   | shaped. For simulation IE3D    | increase by 25% in compared to     |
|       | Sourabh            |                              |                                |                                    |
|       | OCT 2014           |                              | software and for curve         | initial antenna.                   |



#### International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue XII, Dec 2019- Available at www.ijraset.com

|    |                               | T                           | fitting graphmatica is used.    | *gain, directivity, bandwidth,   |
|----|-------------------------------|-----------------------------|---------------------------------|----------------------------------|
|    |                               |                             | Optimization is done by pso     | -                                |
|    |                               |                             | program                         | this                             |
|    |                               |                             | coded in MATLAB.                |                                  |
| 5. | N Feiz, F                     | Performance of              | Metamaterial is                 | paper. *improvement of gain      |
| 5. | · ·                           |                             |                                 | 4.5db and return loss desrease.  |
|    | Mohajeri, Davoud<br>Zari 2014 | microstrip antenna improved |                                 | 4.5db and return loss desrease.  |
|    | Zaii 2014                     | by using metamaterial       | index and use as substrate of a |                                  |
|    |                               | stracture.                  | microstrip antenna.             |                                  |
|    |                               |                             | Pso is used to                  |                                  |
|    |                               |                             | optimize the structure          |                                  |
|    |                               |                             | of metamaterial to              |                                  |
|    |                               |                             | decrease the return             |                                  |
|    |                               |                             | loss. Actual position           |                                  |
|    |                               |                             | of feed is determine            |                                  |
|    |                               |                             | by pso for influence            |                                  |
|    |                               |                             | the radiation                   |                                  |
|    |                               |                             | efficiency. A unit cell         |                                  |
|    |                               |                             | structure is simulation         |                                  |
|    |                               |                             | by HFSS and                     |                                  |
|    |                               |                             | MATELAB .                       |                                  |
| 6. | Fortaki, Tarek;               | Design a rectangular        | Problem is formulated           | *resonance frequency             |
|    | Amir, Mounir;                 | microstrip antenna          | in forms of integral            | result obtain accurate           |
|    | Benkouda, Siham,              | for bandwith and            | equation. Then after            | and very nearest to              |
|    | Abdelkrim 2015                | resonance frequency         | pso is used to                  | experimental result.             |
|    |                               | and bandwidth by            | optimized the antenna           | *calculating time very           |
|    |                               | using particle              | parameter.                      | less as compare to               |
|    |                               | swarm optimization          |                                 | classical methods of             |
|    |                               | (pso)and method of          |                                 | moments.                         |
|    |                               | moments (mom).              |                                 |                                  |
| 7. | Anindita Das,                 | Bandwidth improve           | Antenna is excited by           | *bandwidth improve by            |
|    | Mihir Narayan                 | by design of H slot         | microstrip feed line and        | 50%.                             |
|    | Mohanty & R K                 | microstrip antenna.         | rectangular patch placed upon   | *pso reduce time in the standard |
|    | Mishra OCT 2015               |                             | the substrate. Simulation       | design of patched antenna.       |
|    |                               |                             | of antenna is done by           | *by used of antenna              |
|    |                               |                             | HFSS software and               | resonated at near to             |
|    |                               |                             | optimize parameter              | central frequency.               |
|    |                               |                             | are found by pso.               | •                                |
| 8. | S.Dey,S Ray,A                 | Design a rectangular        | Optimization of                 | *resonance frequency             |
|    | Sinha                         | gap coupled                 | resonant frequency of           | evaluated by optimization        |
|    | 2016                          | microstrip antenna for      | microstrip antenna by           | process which is same as         |
|    |                               | resonance frequency         | particle swarm                  | desire value so this is a        |
|    |                               | using particle swarm        | optimization. Parameter         | efficient method .               |
|    |                               | optimization.               | taken for optimization          | *Gap couple microstrip           |
|    |                               | . r                         | are patch lengh, patch          | antenna Provide high             |
|    |                               |                             | width and patch gap             | bandwidth so most                |
|    |                               |                             | "Total und paten gap            | ourid within 50 most             |

#### V. CONCLUSION

In this review paper show the primary characteristics of microstrip patch antenna, different technique uses in design, different shape of patch taken, different feeding technique and different type of substrate use in the design of this antenna for reducing size and weight and increasing bandwidth, gain etc. microstrip antenna useful in wireless communication, RADER, WLAN, etc. due to their small weight and size in this project, work will be completed in two parts. In first part a Microstrip antennas will be designed using HFSS simulation with conventional circular patch structure. After that Microstrip patch antenna with specific structure i.e. circular patch with multiple fused rectangular slot will be simulated. Performance characteristics of both the shape will be analysed carefully. Initially, microstrip patch antenna will be designed to operate at resonance frequency. After that in second part a simple



#### International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 7 Issue XII, Dec 2019- Available at www.ijraset.com

and efficient technique of feeding microstrip line feed will be used for an impedance matching for improve performance of the antennas. In third part using different methodology /technique Microstrip patch antenna with specific structure (circular patch with multiple fused rectangular slot) dimension and parameter will be enhanced without impacting the performance.

In this work we will optimize the basic characteristic of microstrip patch antenna using different technique in design, different shape of patch, different feeding technique and different type of substrate use in the design for reducing size and weight and increasing bandwidth, gain etc. Microstrip antenna is useful in wireless communication, RADAR, WLAN etc due to their small size, weight, specific structural compatibility and flexibility. Number of parameters such as bandwidth, return loss, VSWR, Radiation pattern, can be improved by changing the parameters such as operating frequency, type of substrate dimensions, feeding techniques etc.

#### REFERENCES

- [1] A.BALANIS, Antenna Theory Third Edition, Analysis and Design4
- [2] Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proc. IEEE Int. Conf.
- [3] "Tayeb al et., has design a broadband microstrip patch antenna for wireless application. Antenna Technology and Applied Electromagnetic, 1998. ANTEM vol. 1998.
- [4] M.Jamshidifar, al et, a new approach to enhance the bandwidth of a novel miniaturized fractal microstrip patch antenna published by IEEE in Antenna Technology and Applied Electromagnetic [ANTEM 2005],
- [5] Abas Sabouni, Optimization of microstrip patch antenna using generic algorithm method, publish by IEEE, ANTEM 2005
- [6] Chopara Bandana, Design and optimization of microstrip patch antenna with defected ground structure and circular slot on the patch, publish by Int. Journal of Applied Sciences and Engineering Research, Vol. 2, Issue 4, 2013
- [7] S. Kohli, S S Dhillon, "optimization of multiband microstrip patch antenna for wireless application, publisher IEEE 27-29 sep 2013 5th International Conference
- [8] Ajay kumar, D.K Srivastava, Dwejendra Arya design bandwidth of microstrip antenna improve by using mushroom type EBG structure publish by IEEE international conference (IMPACT) 2013
- [9] Tandel Tejal, et al, L- Slot Rectangular Microstrip Patch Antenna for WLAN Application. IJLTEMAS, Volume IV, Issue XII, December 2015
- [10] Arief B. Santiko et al, design and realization multi layer parasitic for gain enhancement of microstrip patch antenna ,IEEE, intelligent technology and Application.
- [11] S Samundra, et al, design a rectangular microstrip patch antenna array for c band scatterometer and MBI. publice by IEEE, INDICON 2016.
- [12] Xiaosheng Geo, et al.Design dual band Embedded inverted T-slot circular microstrip patch antenna









45.98



IMPACT FACTOR: 7.129



IMPACT FACTOR: 7.429



## INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24\*7 Support on Whatsapp)