Numerical Solution of the Three-Dimensional Time-Harmonic Maxwell Equations by DG Method Coupled with an Integral Representation

Anis Mohamed

1College of Science and Arts at Tubarjal, Jouf University, P.O. Box 2014, Al-Jouf, Skaka, 42421, Kingdom of Saudi Arabia
1National Engineering School of Tunis, ENIT-LAMSIN BP 37, 1002 Tunis, LR 95-ES-20, Tunisia

Abstract: This work is dedicated to the numerical results and the implementation of the method coupling a discontinuous Galerkin with an integral representation (CDGIR). The originality of this work lies in the choice of discretization by discontinuous Galerkin element and a mixed form for Maxwell's equations. The numerical tests justify the effectiveness of the proposed approach.

Keywords: Finite element method, Maxwell equations, Discontinuous Galerkin method, fictitious domain, integral representation, time-harmonic.

I. INTRODUCTION

Mathematically, the phenomenon of the electromagnetic waves propagation is generally modeled by the system of equations known as the Maxwell equations. There are two modes of the Maxwell equations to be treated, a first mode that is known by the time domain Maxwell equations in which the evolution of electromagnetic fields is studied as a function of time and the second mode that is known by the frequency domain Maxwell equations where one studies the behavior of electromagnetic fields when the source term follows a harmonic dependence in time.

Numerical modeling has become the most important and widely used tool in various fields such as scientific research. The finite-difference methods (FDM), the finite element methods (FEM) and the finite volume methods (FVM) are the three classes of methods known for the numerical resolution of the problems of electromagnetic waves propagation. In 1966, Yee cited the first efficient method in [42] which is the finite-difference methods in the time domain (FDMTD). When diffraction problems are posed in unbounded domain, the use of these methods induces a problem. In order to solve it, two techniques are used. The first consists in reducing to a bounded domain by truncating the computational domain, then it is necessary to impose an artificial condition on the boundary on the truncation boundary. The second technique consists in writing an equivalent problem posed on the boundary of the obstacle, it is therefore what is called the theory of integral equations. The numerical resolution can then be done by discretizing the problem by collocation (method of moments, method of singularity) or by a finite element discretization of the boundary. In 1980, Nedelec introduces the edge finite element method developed in [31] which is also available in [29, 30]. With the conservation of energy, this method also possesses several advantages; it allows to treat unstructured meshes (complex geometries) as it can be used with high orders (see [41, 24, 29]).

In recent years, research has revealed a new technique known as Discontinuous Galerkin Methods (GDM); this strategy is based on combining the advantages of FEM and FVM methods since it approaches the field in each cell by a local basis of functions by treating the discontinuity between neighboring cells by approximation FVM on the flows. Initially, these methods have been proposed to treat the scalar equation of neutron transport (see [35]). In the field of wave propagation, precisely for the resolution of the Maxwell equations in the time domain, many schemes are based on two forms of formulations: a concentrated flux formulation (see [16, 34]) and an upwind flux formulation (see [22, 12]).

Discontinuous Galerkin methods have shown their effectiveness in studying the problem with discrete eigenvalues (see [23]). In frequency domain, for the resolution of Maxwell equations, the majority consider the second order formulation (see [25, 32, 33]), as others study the formulation of the first order as in [6, 20].

This strategy of the CDGIR method allows us to write a problem in an unbounded domain into an equivalent problem in a domain bounded by a fictitious boundary where a transparent condition is imposed. This transparent condition is based on the use of the integral form of the electric and magnetic fields using the Stratton-chu formulas (see [7]). This process has been studied, in the
framework of a coupling between a volume finite element method and a finite element method of boundary, in [5] for the resolution of the Helmholtz equation and in [28] for the resolution of the frequency domain Maxwell equations. In contrast, taking into account the costs of computation and memory occupancy thanks to the matrix resulting from the implementation of the linear system which is full, the methods remain poorly adapted. In 2002, cost problems were largely solved by using multipole methods [39, 8].

A work was done by Darrigrand and Monk in [9] which studies the combination of the ultra-weak variational formulation (UWVF) and the integral representation using a fast multipole method for solving the Maxwell’s equations.

Electromagnetic phenomena are generally described by the electric and magnetic fields E and H which are related to each other by the following Maxwell equations:

\[
\begin{align*}
-\varepsilon \partial_t \mathbf{E} + \nabla \times \mathbf{H} &= j, \\
\mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} &= 0,
\end{align*}
\]

where \(\varepsilon\) and \(\mu\) are the complex-valued relative dielectric permittivity and the relative magnetic permeability, respectively. In the presence of an obstacle \(D\), we are interested in particular solutions of the Maxwell’s equations assuming a time-harmonic regime:

\[
\begin{align*}
\mathbf{E}(x, t) &= \Re(\mathbf{E}(x)\exp(-i\omega t)), \\
\mathbf{H}(x, t) &= \Re(\mathbf{H}(x)\exp(-i\omega t)),
\end{align*}
\]

where \(E\), \(H\) are two complex values and \(\omega\) denotes the angular frequency. The time-harmonic Maxwell system is then written as follows:

\[
\begin{align*}
\nabla \times \mathbf{E} - i\omega \mu \mathbf{H} &= 0 \text{ in } \mathbb{R}^3 \setminus \overline{D}, \\
\nabla \times \mathbf{H} + i\omega \varepsilon \mathbf{E} &= \mathbf{J} \text{ in } \mathbb{R}^3 \setminus \overline{D}.
\end{align*}
\]

The proposed idea to solve this problem is to limit the domain, which is initially unbounded, by a fictitious boundary \(\Gamma_0\) on which we impose an absorbing boundary condition defined in terms of an integral representation (IR) of the solution.

This concept was introduced by Lenoir and Jami in hydrodynamics in 1978 [26], then in 1996 by Lenoir and Hazard for the Maxwell’s equations by using nodal finite elements [19]. Liu and Jin presented very interesting results in 3D by proposing an iterative algorithm which was then interpreted as a Schwarz technique with total recovery by Ben Belgacem et al. in [4]. M. El Bouajaji and S. Lanteri have used in [11] discontinuous Galerkin methods to solve the two-dimensional time-harmonic Maxwell’s equations.

The method of coupling between the finite element and the integral representation, has not had much popularity in the scientific and industrial committee, despite its many advantages.

As of the years 2000, in [27] a renewed interest in this method emerged, following the development of parallel computers and especially the iterative techniques associated with domain decomposition methods.

Following the article of Ben Belgacem - Gmati in [4], some teams are interested in the method and especially its advantages for the problem solving of diffraction of electromagnetic waves around obstacles covered by a dielectric material [1, 18].

Indeed in this case, a boundary finite element technique is not yet applicable and it is with coupling between finite element method and integral equation method that it is used. However, the iterative algorithms for solving this type of problem prove to converge more slowly, whereas the finite element methodological coupled to an integral representation method shows good convergence results. This was explained in the works of [3, 2].

Choosing a appropriate preconditioner for all the used methods, we can rewrite the problem in the form of a linear system where it appears an operator I-K, where I is the identity and K is a bounded operator. For the coupling method, K is a compact operator which guarantees the required properties for a fast convergence of the iterative algorithms for the discrete problem. Then, the sequence \(x^{k+1} = Kx^k + f\) will converge to a solution of our problem as soon as \(\text{sp}(K) \subset D(0,1)\), and the convergence is linear. In case where a Krylov space type algorithm (GMRES or BICGSTAB, for example) is used, the convergence is super-linear. It is for these reasons that we aim to use this method in the context of a discretization by Discontinuous Galerkin method.

II. MAXWELL’S DISCRETE PROBLEM

Discontinuous Galerkin methods are a combination of finite element method and finite volume method. These methods are commonly used for solving the Maxwell’s equations in 1D, 2D and 3D.

In 2D, Discontinuous Galerkin methods are developed on triangular meshes while they are developed on tetrahedral meshes in the three-dimensional case [15, 14, 16, 21, 10].

In this section, we give the detailed development for the 3D-Maxwell’s equations.
A. **3D Maxwell’s Equations with transparent boundary condition**

In this paper we focus on the study of the solution of the problem posed either with an absorbent boundary condition or an exact transparent condition:

We denote by E^{inc} and H^{inc} the electric field and the magnetic field of the incident wave, respectively.

The hyperbolicity of Maxwell’s system is immanent, the physical interpretation of this characterization is that the waves and the associated energy propagate in finite time according to particular directions. This property has been little exploited for the resolution of Maxwell’s system whereas it has been widely used for the Euler system, for example. The essential application of this property for numerical computation is the construction of decentred schemes which naturally take into account the direction of propagation of the waves.

In this work, we study to investigate the propagation of a wave emitted in the presence of an obstacle D.

This work is devoted to particular solutions, harmonic in time, this phenomenon is modeled by the following equations:

$$
\begin{align*}
\nabla \times E + i\omega H &= J \quad \text{in} \quad \Omega \\
\nabla \times H - i\omega E &= 0 \quad \text{in} \quad \Omega \\
\end{align*}
$$

(3)

For simplicity we assume that $J=0$.

The idea of solving our problem in the present paper, is to limit the computational domain by a fictitious boundary and using an absorbant condition on this boundary and to use an exact condition on the fictitious boundary, hence the idea of the use of the expression of electric and magnetic fields defined by Stratton-Shu formulas, in the Silver-Müller conditions.

At this phase, we introduce the equations of our problem

$$
\begin{align*}
\left\{ \begin{array}{ll}
\nabla \times E + i\omega H &= J \\
\nabla \times H - i\omega E &= 0 \\
\nabla \times E &= -n \times E^{inc} & \text{on} & \Gamma_m \\
n \times E - n \times (n \times H) &= n \times \mathcal{R}(E) - n \times (n \times \mathcal{R}(H)) & \text{on} & \Gamma_a \\
\end{array} \right. \\
\end{align*}
$$

(4)

we set:

$$
E^{inc} = \begin{bmatrix} E_1^{inc} \\ E_2^{inc} \\ E_3^{inc} \end{bmatrix}, \quad E = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}, \quad H = \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix} \quad \text{et} \quad n = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}
$$

We are going to give a global equation in the vector field W such that: $W = \begin{bmatrix} E \\ H \end{bmatrix}$

Finally the initial problem (4) will be written in this matricial form:

$$
\begin{align*}
\left\{ \begin{array}{ll}
\omega QW + \nabla . F(W) &= 0 & \text{on} & \Omega \\
AW &= -AW^{inc} & \text{in} & \Gamma_m \\
BW &= B\mathcal{R}(W) & \text{in} & \Gamma_a \\
\end{array} \right. \\
\end{align*}
$$

(5)

which is equivalent to:

$$
\begin{align*}
\left\{ \begin{array}{ll}
\omega QW + G_x \partial_x W + G_y \partial_y W + G_z \partial_z W &= 0 & \text{on} & \Omega \\
(M_{\Gamma_m} - G_n)(W + W^{inc}) &= 0 & \text{in} & \Gamma_m \\
(M_{\Gamma_a} - G_n)(W - \mathcal{R}(W)) &= 0 & \text{in} & \Gamma_a \\
\end{array} \right. \\
\end{align*}
$$

(6)

In fact, denoting by (e_x,e_y,e_z) the canonical basis of \mathbb{R}^3, the matrices G_k for $k \in \{x,y,z\}$ are defined by:
\[G_k = \begin{bmatrix} 0_{3 \times 3} & N_{e_k} \\ N_{\kappa_k} & 0_{3 \times 3} \end{bmatrix} \] where for \(l \in \{1, 2, 3\} \) a vector \(v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \), \(N_v = \begin{bmatrix} 0 & v_3 & -v_2 \\ -v_3 & 0 & v_1 \\ v_2 & -v_1 & 0 \end{bmatrix} \)

Furthermore, \(G_n = G_x n_1 + G_y n_2 + G_z n_3 \).

\(G_n^+ \) and \(G_n^- \) denote the positive and negative parts of \(G_n \). We also define \(|G_n| = G_n^+ - G_n^- \). The matrices \(M_{r_m} \) and \(M_{r_a} \), are then defined by:

\[
M_{r_m} = \begin{bmatrix} 0_{3 \times 3} & N_n \\ -N_n & 0_{3 \times 3} \end{bmatrix} \quad \text{and} \quad M_{r_a} = |G_n| \\
A = M_{r_m} - G_n, \quad B = M_{r_a} - G_n
\]

B. Discretization

The domain \(\Omega \) is partitioned into \(N \) tetrahedral elements. We denote by \(\tau_h \) the set of elements \(K_i \). We introduce the following space \(V_h = \{ W \in [L^2(\Omega)]^3 \} \) and \(W_{|K_i} = W_i \in P_p(K) \) where \(P_p(K) = \{ \text{polynomials for } K \text{ of degree } \leq p \} \).

We denote by \(W_i = (E_i, H_i) \) the approximate solution of our problem \(V_h \times V_h \) and we will define \(I_i^0 = \bigcup_{i \in \tau_h} K_i \cap K_j, \ I_i^m = \bigcup_{i,j \in \tau_h, K_i \cap K_j} \Gamma_i \cap \Gamma_j, \ I_i^a = \bigcup_{i \in \tau_h} K_i \cap \Gamma_a \).

Multiplying the equation: \(i\omega W + \sum_{i \in \{x,y,z\}} G_i \partial_i W = 0 \) of the last system by \(V \in V_h \times V_h \) and then integrated over an element \(K_i \in \tau_h \)

\[
\int_{K_i} (i\omega W_i)^d \nabla dx + \int_{K_i} \left(\sum_{i \in \{x,y,z\}} G_i \partial_i W_i \right)^d \nabla dx = 0
\]

By using Green formula, we have:

\[
\int_{K_i} (i\omega W_i)^d \nabla dx - \int_{K_i} W_i^t \left(\sum_{i \in \{x,y,z\}} G_i \partial_i \nabla \right) dx + \int_{\partial K_i} (F(W)_i \cdot n) \nabla \partial \sigma = 0,
\]

Our aim is to find \(W_i \in V_h \times V_h \) which verifies the following equation:

\[
\forall \ V \in V_h \times V_h, \quad \int_{K_i} (i\omega W_i)^d \nabla dx - \int_{K_i} W_i^t \left(\sum_{i \in \{x,y,z\}} G_i \partial_i \nabla \right) dx + \int_{\partial K_i} (F(W)_i \cdot n) \nabla \partial \sigma = 0,
\]

In the equation (6), we find that there is a term defined on the boundary of the element \(K_i \), but the value is not defined on its faces. There is the idea of the approach by an approximation of the value of the solution on each edge depending on the right and left traces.

By a development similar to that adopted by Ern and Guermond [12, 13], and adding the terms of the integral representation following formulation is obtained:

\[
\forall \ V \in V_h \times V_h, \quad K_i \text{ an element of } \tau_h \text{ obtained:}
\]

Find \(W_i \in V_h \times V_h \) such as:

\[
\int_{K_i} (i\omega W_i)^d \nabla dx - \int_{K_i} W_i^t \left(\sum_{i \in \{x,y,z\}} G_i \partial_i \nabla \right) dx + \int_{F_{\text{eff}}} \left[(I_{FK_i} S_{F_i} W_i)^d \nabla + (I_{FK_i} G_{np}(W_i))^d \nabla \right] \partial \sigma \\
+ \int_{F_{\text{eff}}} \left[\frac{1}{2} (M_{FK_i} + I_{FK_i} G_{np}) W_i^d \nabla \right. \\
- \int_{F_{\text{eff}}} \left. \left[\frac{1}{2} (M_{FK_i} - I_{FK_i} G_{np}) \Re(W_i)^d \nabla \sigma \\
+ \int_{F_{\text{eff}}} \left[\frac{1}{2} (M_{FK_i} + I_{FK_i} G_{np}) W_i^d \nabla \partial \sigma \\
- \int_{F_{\text{eff}}} \left[\frac{1}{2} (M_{FK_i} - I_{FK_i} G_{np}) W_i^{inc} \nabla \partial \sigma \right.
ight]
\]

where:

\(I_{FK} \) represents the incidence matrix between facing surfaces and elements whose entries are given by:

\[I = P A P^{-1} \]

\[I = P A P^{-1} \] is the natural factorization of \(G \) where \(G = P A P^{-1} \) where \(A^+ \) (resp. \(A^- \)) includes only positive eigenvalues (resp. negative).
In the next section, we intend to write the variational formulation obtained in a linear system form.

1) Centered flux: In this case, $S_F = 0$ and the faces of the boundary we use

$$M_{F,K} = \begin{cases}
I_{FK} \left[\begin{array}{c}
0_{3 \times 3} \\
-N_{n_F}^T 0_{3 \times 3} \\
|G_{n_F}|
\end{array} \right] & \text{if } F \in \Gamma^m. \\
\end{cases}$$

2) Upwind flux

In this case,

$$S_F = \begin{bmatrix} \alpha_{p}^F N_{n_F} N_{n_F}^T 0_{3 \times 3} \\
0_{3 \times 3} \alpha_{p}^T N_{n_F} N_{n_F}^T
\end{bmatrix}; \quad M_{F,K} = \begin{bmatrix}
\eta_F N_{n_F} N_{n_F}^T I_{FK} N_{n_F}^T \\
-N_{n_F} I_{FK} N_{n_F}^T 0_{3 \times 3} \\
|G_{n_F}| \end{bmatrix} \quad \text{if } F \in \Gamma^m.$$

for a homogeneous medium, $\eta_F = \alpha_{p}^F = \alpha_{p}^T = \frac{1}{2}$

Finally, we introduce $F_{ij} = K_i \cap K_j$, $F_{i}^m = K_i \cap \Gamma_m$, $F_{i}^a = K_i \cap \Gamma_a$ and V_i: the set of indices of neighboring elements of K_i. So we can write our formulation in the following form:

\[\forall \, V \in V_h \times V_h \text{ and for } K_i \text{ an element of } \tau_h: \]

Find $W_i \in V_h \times V_h$ such as:

\[
\int_{K_i} (i \omega Q W_i)^{T} \mathbf{V} dx - \int_{K_i} W_i^{T} (\sum_{e \in \{x,y,z\}} G_e \partial_i \mathbf{V}) dx + \sum_{e \in V_i} \int_{e} (I_{FK}(S_{FK} + \frac{1}{2} G_{n_F}) W_i)^{T} \mathbf{V} dx + \sum_{e \in V_i} \int_{e} (I_{FK}(S_{FK} + \frac{1}{2} G_{n_F}) W_j)^{T} \mathbf{V} dx + \delta_{F_i^a} \int_{F_i^a} (\frac{1}{2} (M_{FK} + I_{FK} G_{n_F}) W_i)^{T} \mathbf{V} d\sigma - \delta_{F_i^m} \int_{F_i^m} (\frac{1}{2} (M_{FK} - I_{FK} G_{n_F}) W_i)^{T} \mathbf{V} d\sigma + \delta_{F_i^m} \int_{F_i^m} (\frac{1}{2} (M_{FK} + I_{FK} G_{n_F}) W_i)^{T} \mathbf{V} d\sigma = \delta_{F_i^m} \int_{F_i^m} (\frac{1}{2} (M_{FK} - I_{FK} G_{n_F}) W_i^\ast)^{T} \mathbf{V} d\sigma
\]

where:

\[
\delta_{F_i^a} = \begin{cases}
1 & \text{if } \Gamma_a \cap K_i = F_i^a \\
0 & \text{if } \Gamma_a \cap K_i = \emptyset
\end{cases} \quad \text{and} \quad \delta_{F_i^m} = \begin{cases}
1 & \text{if } \Gamma_m \cap K_i = F_i^m \\
0 & \text{if } \Gamma_m \cap K_i = \emptyset
\end{cases}
\]

In the next section, we intend to write the variational formulation obtained in a linear system form.
we can reduce our problem as a linear system:
\[(A - C)X = b\]
such as \(A\) is the square matrix of size:
\[N = 6 \times \frac{\text{Number of degrees of freedom}}{d_i} \times \frac{\text{Number of cells}}{N_c}\]
this matrix is a sparse matrix defined by block size \((6d_i \times 6d_i)\) such as: for \(i, j = 1, \ldots, N_c:\)
\[A(i, i) = D_t^1 - D_t^2 + \delta_{ij} + D_i\]
\[A(i, j) = E_{ij} \times \delta_{ij}\]
with:
\[\delta_{ij} = \begin{cases} 0 & \text{if } K_i \cap K_j = \emptyset \\ 1 & \text{else} \end{cases}\]
also, \(C\) is a square matrix of the same size as \(A\), defined by block size \(6d_i \times 6d_i\) such as: for \(i, j = 1, \ldots, N_c:\)
\[C(i, j) = -\delta_{ij} \times D_{ij}\]

\(X\) is the vector of size \(N\), Where its components are the unknowns of our problem and \(b\) is the vector of size \(N\) such as:
\[b(i) = B_{in} \times \delta_{in}\]

where: \(D_t^1 = i\omega(\Phi_t \otimes Q), D_t^2 = \sum_{i=1}^N (\Phi_t \otimes G_t), D_{ij} = \left(\Psi_{ij} \otimes \left[\frac{1}{2}(M_{FK_i} + I_{FK_i}G_{n_p})\right]\right)\),
\[D_{ij}^I = \left(\Psi_{ij}^I \otimes \left[\frac{1}{2}(M_{FK_i} + I_{FK_i}G_{n_p})\right]\right), D_{ij}^P = \left(\Psi_{ij} \otimes \left[I_{FK_i}(S_P I_{FK_i} + \frac{1}{2}G_{n_p})\right]\right), E_{ij} = \sum_{j=1}^N \left(\Psi_{ij} \otimes \left[I_{FK_i}(S_P I_{FK_j} + \frac{1}{2}G_{n_p})\right]\right)\),
\[C_{ij} = \frac{1}{2} \left(\Psi_{ij} \otimes I_n\right) Z_i \left(\Psi_{ij} \otimes I_n\right) B_{in} = Z_i W_{in} = \left(\Psi_{ij} \otimes \left[\frac{1}{2}(M_{FK_i} - I_{FK_i}G_{n_p})\right]\right) W_{in}\]

This section is devoted to the numerical resolution of Maxwell’s 3D equations in parallel mode detailed in [17]. Since the linear system resulting from the discretization is of very large size and it is implies complex coefficient blocks and generally, not hermitian, for its resolution, an idea proposed by [38], it is to adopt a decomposition approach Domain. Then the global problem is decomposed into sub-problems related to each other by specific interface conditions.

We consider here an iterative method of Krylov type as a strategy of resolution. Various methods of this type specified in not symmetric matrices (see [37]). In this study, we chose a bi-conjugated stabilized gradient method (BiCGStab) in the numerical tests of this manuscript. The BiCGStab method is introduced in 1992 by van der Vorst [40] and that combines the advantages of BiCG (Bi-Conjugated Gradient) and GMRES methods (see [36]). Following the mathematical study, developed in the previous chapter, of the resolution of the Maxwell equations in unbounded domain by the CDGIR method, we present a sample of the numerical results. We will give some numerical results by making the comparison between the approximate solution and the exact solution. We introduce the error formula:
\[\text{Error} = \left(\frac{1}{2} \left| |E|_{\text{numerical}} - |E|_{\text{analytical}}|_{L^2(\Omega)}^2 + |H|_{\text{numerical}} - |H|_{\text{analytical}}|_{L^2(\Omega)}^2\right|^\frac{1}{2}\]
Let us consider the problem of the diffraction of a plane wave.

Figure 2: Meshing of the volume between a first sphere of radius $R = 1$ and a second sphere of radius $R = 1.06$. A mesh size $h = 0.07$.

Figure 3: Meshing of the volume between a first sphere of radius $R = 1$ and a second sphere of radius $R = 1.06$. A mesh size $h = 0.07$.

Figure 4: Maxwell 3D equations: diffraction of a plane wave by a perfectly conducting sphere: Approximate solution, wave number $k = 5$.

Figure 5: Maxwell 3D equations: diffraction of a plane wave by a perfectly conducting sphere: Exact solution, wave number $k = 5$.

Table I

<table>
<thead>
<tr>
<th>Mesh</th>
<th>#M1</th>
<th>#M2</th>
<th>#M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance between Γ_m and Γ_a</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>h_{max}</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Number of elements</td>
<td>204222</td>
<td>476454</td>
<td>830879</td>
</tr>
<tr>
<td>Relative error (DG)</td>
<td>0.467×10^{-1}</td>
<td>0.288×10^{-1}</td>
<td>0.286×10^{-1}</td>
</tr>
<tr>
<td>Relative error (DG+IR)</td>
<td>0.843×10^{-2}</td>
<td>0.883×10^{-2}</td>
<td>0.909×10^{-2}</td>
</tr>
</tbody>
</table>

Fig. 6 Maxwell 3D equations: diffraction of a plane wave by a perfectly conducting sphere: Exact solution, wave number $k=5$.
A. Performance of methods with centered flux & upwind flux

We will study the performances of two methods, Discontinuous Galerkin method and Discontinuous Galerkin method coupled to an integral representation, with the centered and upwind flux according to degree of freedom.

We will fix:
1) The distance between Γ_o and Γ_m at 0.5m.
2) A frequency $f = 300MHz$.

The comparison results between the two methods DG+IR and DG are illustrated in table II in the form of the relative error between the exact solution and the approximate solution either using a centered flux (see also figure 7) or an upwind flux (see also figure 8).

Table II. Performance of DG and DG+IR methods with centered and upwind flux.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Method</th>
<th>Boundary faces</th>
<th>Number of elements</th>
<th>Relative error (Centered flux)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#M1</td>
<td>DG</td>
<td>13856</td>
<td>68662</td>
<td>6.32151×10^{-4}</td>
<td>185</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>4.45810×10^{-4}</td>
<td>3127</td>
</tr>
<tr>
<td>#M2</td>
<td>DG</td>
<td>19662</td>
<td>112410</td>
<td>4.93931×10^{-4}</td>
<td>352</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>1.56624×10^{-4}</td>
<td>8794</td>
</tr>
<tr>
<td>#M3</td>
<td>DG</td>
<td>22618</td>
<td>135661</td>
<td>4.50915×10^{-4}</td>
<td>633</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>9.22500×10^{-4}</td>
<td>12023</td>
</tr>
<tr>
<td>#M4</td>
<td>DG</td>
<td>30174</td>
<td>212040</td>
<td>3.59586×10^{-4}</td>
<td>541</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>7.41006×10^{-4}</td>
<td>13167</td>
</tr>
<tr>
<td>#M5</td>
<td>DG</td>
<td>42286</td>
<td>351272</td>
<td>2.79567×10^{-4}</td>
<td>1436</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>5.50798×10^{-4}</td>
<td>19223</td>
</tr>
<tr>
<td>#M6</td>
<td>DG</td>
<td>61296</td>
<td>642020</td>
<td>3.29504×10^{-4}</td>
<td>822</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>5.42193×10^{-4}</td>
<td>12803</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Method</th>
<th>Boundary faces</th>
<th>Number of elements</th>
<th>Relative error (Upwind flux)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#M1</td>
<td>DG</td>
<td>13856</td>
<td>68662</td>
<td>6.29630×10^{-4}</td>
<td>145</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>2.26847×10^{-4}</td>
<td>2973</td>
</tr>
<tr>
<td>#M2</td>
<td>DG</td>
<td>19662</td>
<td>112410</td>
<td>4.92687×10^{-4}</td>
<td>384</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>1.10472×10^{-4}</td>
<td>8842</td>
</tr>
<tr>
<td>#M3</td>
<td>DG</td>
<td>22618</td>
<td>135661</td>
<td>4.45918×10^{-4}</td>
<td>469</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>8.94731×10^{-4}</td>
<td>10513</td>
</tr>
<tr>
<td>#M4</td>
<td>DG</td>
<td>30174</td>
<td>212040</td>
<td>3.59075×10^{-4}</td>
<td>637</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>6.70311×10^{-4}</td>
<td>2984</td>
</tr>
<tr>
<td>#M5</td>
<td>DG</td>
<td>42286</td>
<td>351272</td>
<td>2.79336×10^{-4}</td>
<td>302</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>5.20943×10^{-4}</td>
<td>8460</td>
</tr>
<tr>
<td>#M6</td>
<td>DG</td>
<td>61296</td>
<td>642020</td>
<td>3.29197×10^{-4}</td>
<td>73</td>
</tr>
<tr>
<td>—</td>
<td>DG+IR</td>
<td>—</td>
<td>—</td>
<td>4.82516×10^{-4}</td>
<td>2014</td>
</tr>
</tbody>
</table>

A good improvement of the convergence is observed by using the DG method coupled to an integral representation using either a centered flux or an upwind flux.
B. Error Depending on the size of the Domain of Study

We are interested in the case where the discretization step h and the waves number $k=10$ are fixed and by varying the distance delimited between the boundary of the obstacle Γ_m and the artificial boundary Γ_a by keeping a choice of wavelength equal to $20h$. We will illustrate in a table III the evolution of the error for the two methods DG and DG+IR.

![Fig. 9 Error according the size of the domain R](image)

TABLE III

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Method</th>
<th>Distance between Γ_m and Γ_a, h_{max}</th>
<th>Number of elements</th>
<th>Relative error</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#M1</td>
<td>DG</td>
<td>0.03, 0.03</td>
<td>359487</td>
<td>0.380453×10^{-1}</td>
<td>1280</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td></td>
<td></td>
<td>0.514891×10^{-2}</td>
<td>18271</td>
</tr>
<tr>
<td>#M2</td>
<td>DG</td>
<td>0.06, 0.03</td>
<td>748447</td>
<td>0.285759×10^{-1}</td>
<td>2370</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td></td>
<td></td>
<td>0.501781×10^{-2}</td>
<td>34483</td>
</tr>
<tr>
<td>#M3</td>
<td>DG</td>
<td>0.12, 0.03</td>
<td>897438</td>
<td>0.273918×10^{-1}</td>
<td>2343</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td></td>
<td></td>
<td>0.500574×10^{-2}</td>
<td>35847</td>
</tr>
</tbody>
</table>

C. Error Depending on the Waves Number k

By fixing the number of finite elements layers with two layers, we are interested in the evolution of the error by varying the waves number k and by keeping a choice of wavelength equal to $10h$. We will illustrate in a table IV the evolution of the error for the two methods DG and DG+IR.

TABLE IIIV

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Method</th>
<th>Wave number</th>
<th>Distance between Γ_m and Γ_a, h_{max}</th>
<th>Number of elements</th>
<th>Relative error</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#M1</td>
<td>DG</td>
<td>1</td>
<td>1.2, 0.6</td>
<td>6901</td>
<td>0.272×10^{-1}</td>
<td>919</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td></td>
<td></td>
<td></td>
<td>0.920×10^{-2}</td>
<td>13967</td>
</tr>
<tr>
<td>#M2</td>
<td>DG</td>
<td>2</td>
<td>0.57, 0.3</td>
<td>18352</td>
<td>0.443×10^{-1}</td>
<td>761</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td></td>
<td></td>
<td></td>
<td>0.904×10^{-2}</td>
<td>13221</td>
</tr>
<tr>
<td>#M3</td>
<td>DG</td>
<td>8</td>
<td>0.105, 0.07</td>
<td>510289</td>
<td>0.353×10^{-1}</td>
<td>3002</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td></td>
<td></td>
<td></td>
<td>0.811×10^{-2}</td>
<td>55002</td>
</tr>
<tr>
<td>#M4</td>
<td>DG</td>
<td>12</td>
<td>0.08, 0.05</td>
<td>1011662</td>
<td>0.251×10^{-1}</td>
<td>5501</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td></td>
<td></td>
<td></td>
<td>0.804×10^{-2}</td>
<td>93364</td>
</tr>
<tr>
<td>#M5</td>
<td>DG</td>
<td>16</td>
<td>0.054, 0.03</td>
<td>800790</td>
<td>0.282×10^{-1}</td>
<td>4009</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td></td>
<td></td>
<td></td>
<td>0.801×10^{-2}</td>
<td>82526</td>
</tr>
</tbody>
</table>
D. Variation of R where \(k = 5 \)

The table (V) illustrates the results of comparison, of two methods DG and DG+IR, obtained by varying the outer radius and fixing the mesh size \(h \).

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Method</th>
<th>Distance between (\Gamma_m) and (\Gamma_n)</th>
<th>(h_{\text{max}})</th>
<th>Number of elements</th>
<th>Relative error</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#M1</td>
<td>DG</td>
<td>0.2</td>
<td>0.1</td>
<td>204222</td>
<td>(0.429 \times 10^{-1})</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.231 \times 10^{-1})</td>
<td>-</td>
</tr>
<tr>
<td>#M2</td>
<td>DG</td>
<td>0.4</td>
<td>0.1</td>
<td>476454</td>
<td>(0.288 \times 10^{-1})</td>
<td>1263</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.250 \times 10^{-1})</td>
<td>-</td>
</tr>
<tr>
<td>#M3</td>
<td>DG</td>
<td>0.6</td>
<td>0.1</td>
<td>830879</td>
<td>(0.286 \times 10^{-1})</td>
<td>761</td>
</tr>
<tr>
<td></td>
<td>DG+IR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.252 \times 10^{-1})</td>
<td>-</td>
</tr>
</tbody>
</table>

From the results obtained, it is clear that:

1) The DG+IR method is more efficient.
2) It is clear that the results obtained using the upwind flux are better.

V. CONCLUSION

In study, we have shown the high efficiency of the DG+IR method. So, since the results obtained are encouraging, the contributions proposed in this paper for the 3D Maxwell’s equations aim to make a study with a high interpolation order and to think about the use of other linear system solvers and even to choose a preconditioner in order to further improve these results.

REFERENCES

