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Abstract: This work is dedicated to the numerical results and the implementation of the method coupling a discontinuous
Galerkin with an integral representation (CDGIR). The originality of this work lies in the choice of discretization by
discontinuous Galerkin element and a mixed form for Maxwell’s equations. The numerical tests justify the effectiveness of the
proposed approach.
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I. INTRODUCTION
Mathematically, the phenomenon of the electromagnetic waves propagation is generally modeled by the system of equations known
as the Maxwell equations. There are two modes of the Maxwell equations to be treated, a first mode that is known by the time
domain Maxwell equations in which the evolution of electromagnetic fields is studied as a function of time and the second mode
that is known by the frequency domain Maxwell equations where one studies the behavior of electromagnetic fields when the source
term follows a harmonic dependence in time.
Numerical modeling has become the most important and widely used tool in various fields such as scientific research. The finite-
difference methods (FDM), the finite element methods (FEM) and the finite volume methods (FVM) are the three classes of
methods known for the numerical resolution of the problems of electromagnetic waves propagation. In 1966, Yee cited the first
efficient method in [42] which is the finite-difference methods in the time domain (FDMTD). When diffraction problems are posed
in unbounded domain, the use of these methods induces a problem. In order to solve it, two techniques are used. The first consists in
reducing to a bounded domain by truncating the computational domain, then it is necessary to impose an artificial condition on the
boundary on the truncation boundary. The second technique consists in writing an equivalent problem posed on the boundary of the
obstacle, it is therefore what is called the theory of integral equations. The numerical resolution can then be done by discretizing the
problem by collocation (method of moments, method of singularity) or by a finite element discretization of the boundary. In 1980,
Nedelec introduces the edge finite element method developed in [31] which is also available in [29, 30]. With the conservation of
energy, this method also possesses several advantages; it allows to treat unstructured meshes (complex geometries) as it can be used
with high orders (see [41, 24, 29]).
In recent years, research has revealed a new technique known as Discontinuous Galerkin Methods (GDM)); this strategy is based on
combining the advantages of FEM and FVM methods since it approaches the field in each cell by a local basis of functions by
treating the discontinuity between neighboring cells by approximation FVM on the flows. Initially, these methods have been
proposed to treat the scalar equation of neutron transport (see [35]). In the field of wave propagation, precisely for the resolution of
the Maxwell equations in the time domain, many schemes are based on two forms of formulations: a concentrated flux formulation
(see [16, 34]) and an upwind flux formulation (see [22, 12]).
Discontinuous Galerkin methods have shown their effectiveness in studying the problem with discrete eigenvalues (see [23]). In
frequency domain, for the resolution of Maxwell equations, the majority consider the second order formulation (see [25, 32, 33]), as
others study the formulation of the first order as in [6, 20].
This strategy of the CDGIR method allows us to write a problem in an unbounded domain into an equivalent problem in a domain
bounded by a fictitious boundary where a transparent condition is imposed. This transparent condition is based on the use of the
integral form of the electric and magnetic fields using the Stratton-chu formulas (see [7]). This process has been studied, in the
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framework of a coupling between a volume finite element method and a finite element method of boundary, in [5] for the resolution
of the Helmholtz equation and in [28] for the resolution of the frequency domain Maxwell equations.
In contrast, taking into account the costs of computation and memory occupancy thanks to the matrix resulting from the
implementation of the linear system which is full, the methods remain poorly adapted. In 2002, cost problems were largely solved
by using multipole methods [39, 8].
A work was done by Darrigrand and Monk in [9] which studies the combination of the ultra-weak variational formulation (UWVF)
and the integral representation using a fast multipole method for solving the Maxwell’s equations.
Electromagnetic phenomena are generally described by the electric and magnetic fields E and H which are related to each other by
the following Maxwell equations:

{—sate+|7><}[ = 1)

UOLH +Vx€& = 0,

where ¢ and p are the complex-valued relative dielectric permittivity and the relative magnetic permeability, respectively. In the
presence of an obstacle D, we are interested in particular solutions of the Maxwell’s equations assuming a time-harmonic regime:

E(x,t) = Re(E(x)exp(—iwt)),

{S’-[(x, t) = Re(H(x)exp(—iwt)),

where E, H are two complex values and @ denotes the angular frequency. The time-harmonic Maxwell system is then written as
follows:

{V xE—iwouH = 0 in  R3\D, ?

VxH+iweE = J in  R3\D.

The proposed idea to solve this problem is to limit the domain, which is initially unbounded, by a fictitious boundary I';, on which
we impose an absorbing boundary condition defined in terms of an integral representation (IR) of the solution.
This concept was introduced by Lenoir and Jami in hydrodynamics in 1978 [26], then in 1996 by Lenoir and Hazard for the
Maxwell’s equations by using nodal finite elements [19]. Liu and Jin presented very interesting results in 3D by proposing an
iterative algorithm which was then interpreted as a Schwarz technique with total recovery by Ben Belgacem et al. in [4]. M. El
Bouajaji and S. Lanteri have used in [11] discontinuous Galerkin methods to solve the two-dimensional time-harmonic Maxwell’s
equations.
The method of coupling between the finite element and the integral representation, has not had much popularity in the scientific and
industrial committee, despite its many advantages.
As of the years 2000, in [27] a renewed interest in this method emerged, following the development of parallel computers and
especially the iterative techniques associated with domain decomposition methods.
Following the article of Ben Belgacem - Gmati in [4], some teams are interested in the method and especially its advantages for the
problem solving of diffraction of electromagnetic waves around obstacles covered by a dielectric material [1, 18].
Indeed in this case, a boundary finite element technique is not yet applicable and it is with coupling between finite element method
and integral equation method that it is used. However, the iterative algorithms for solving this type of problem prove to converge
more slowly, whereas the finite element methodological coupled to an integral representation method shows good convergence
results. This was explained in the works of [3, 2].
Choosing a appropriate preconditioner for all the used methods, we can rewrite the problem in the form of a linear system where it
appears an operator 1-K, where 1 is the identity and K is a bounded operator. For the coupling method, K is a compact operator
which guarantees the required properties for a fast convergence of the iterative algorithms for the discrete problem. Then, the
sequence x™*1 = Kx™ + f will converge to a solution of our problem as soon as sp(K)cD(0,1), and the convergence is linear. In
case where a Krylov space type algorithm (GMRES or BICGSTAB, for example) is used, the convergence is super- linear. It is for
these reasons that we aim to use this method in the context of a discretization by Discontinuous Galerkin method..

Il. MAXWELL’SDISCRETE PROBLEM
Discontinuous Galerkin methods are a combination of finite element method and finite volume method. These methods are
commonly used for solving the Maxwell’s equations in 1D, 2D and 3D.
In 2D, Discontinuous Galerkin methods are developed on triangular meshes while they are developed on tetrahedral meshes in the
three-dimensional case [15, 14, 16, 21, 10].
In this section, we give the detailed development for the 3D-Maxwell’s equations.

©IJRASET: All Rights are Reserved




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177
Volume 7 Issue XI1I, Dec 2019- Available at www.ijraset.com

A. 3D Maxwell’s Equations with transparent boundary condition

In this paper we focus on the study of the solution of the problem posed either with an absorbent boundary condition or an exact
transparent condition:

We denote by E™¢ and H"¢ the electric field and the magnetic field of the incident wave, respectively.

o \ . RRET T
(E‘“,H’“)\. . X %’)

Fig. 1 Diffraction of an electromagnetic wave in the presence of an obstacle D where its boundary is noted [,

The hyperbolicity of Maxwell’s system is immanent, the physical interpretation of this characterization is that the waves and the
associated energy propagate in finite time according to particular directions. This property has been little exploited for the resolution
of Maxwell’s system whereas it has been widely used for the Euler system, for example. The essential application of this property
for numerical computation is the construction of decentred schemes which naturally take into account the direction of propagation
of the waves.
In this work, we study to investigate the propagation of a wave emitted in the presence of an obstacle D.
This work is devoted to particular solutions, harmonic in time, this phenomenon is modeled by the the following equations:

{v xE+iopH = ] in  R3\D, 3)

VxH—iweE = 0 in  R3\D.

For simplicity we assume that J=0.

The idea of solving our problem in the present paper, is to limit the computational domain by a fictitious boundary and using an
absorbant condition on this boundary and to use an exact condition on the fictitious boundary, hence the idea of the use of the
expression of electric and magnetic fields defined by Stratton-Shu formulas, in the Silver-Miller conditions.

At this phase, we introduce the equations of our problem (4)
(Find E,H € H(V %,Q) such as:
liveE—-VxH=0 in Q

iwuH +VXE =0 in Q (4)
[nxE=-nxE"  on T,
kan—nx(an)=n><iR(E)—n><(n><§R(H)) on T,
we set:
Elinc E1 H1 ny
Einc = |gincl | E=|E,| , H=|Hy| et n= [nzl
Eé’nc E; H, ns

We are going to give a global equation in the vector field W such that: W = [g]
Finally the initial problem (4) will be written in this matricial form:
iwQW +V.F(W)=0 on 0
AW = —AW™ in T, (5)
BW =BRW) in I,
which is equivalent to:
lwQW + G, 0,W + G, 0,W +G,0,W =0 on Q
My, —G)(W+W™)=0 in T, (6)
(Mp, — G )(W —R(W))=0 in T,
In fact, denoting by (e, e,, e,) the canonical basis of R*, the matrices G, for k € {x,y, z} are defined by:
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Os5 Ne V1 0 vz -
Gy = [Nt 0 k ]where for 1 € {1,2,3}a vector v = |V2|,N,=|-v; O v,
) o Vs V2 -V 0

Furthermore, G, = Gyny + Gyn, + G,ns.
G, and G, denote the positive and negative parts of G,, 1. We also define |G,| = G, — G, . The matrices My et My, are then
defined by:

MF — 03><3 Nn

= t
m =Ny Osx;

A=M;, —G,,B=M, —G,

] and My, = |G|

B. Discretization
The domain Q is partionned into N tetrahedral elements. We denote by 7, the set of elements K;. We introduce the following space
Vy ={W € [L>(Q)]°; W, = W; € P,(K)}; for all K; € t,,} where P,(K) = {polynomials for K of degree < p}.

We denote by W; = (E;, H;) the approximate solution of our problem € V,, x V,, and we will define I;° = UK].ETh K, N f] Lm=

UKiE‘L'h Kn Fm! I—l':a = UKiE‘L'h Kn ra'
Multiplying the equation: iwQW + X;epr 4 G,O,W =0 of the last system by V € V,, x V, and then integrated over an element
K, eE1y

f (iwQW)TVdx + f (Z G,0,W)Vdx =0
X, K Lieqryn)

o f (iwQW,) Vdx + f (Z G,0,W,)Vdx = 0
X, K Lieqryn)

By using Green formula, we have:

f (iwQW)Tdx — | wi( Z GoV)dx+ | (F(W);n)Vas =0,
K; OK;

Ki

le{x,y .z}
Our aim isto find W; € V},, x V,, which verifies the following equation:
V VEV, XV, [ (wQW)Vdx — [ WfRiepeyn GOV)dx + [, (F(W).n)Vdo =0, 6)

In the equation (6), we find that there is a term defined on the boundary of the element K;, but the value is not defined on its faces.
There is the idea of the approach by an approximation of the value of the solution on each edge depending on the right and left
traces.
By a development similar to that adopted by Ern and Guermond [12, 13], and adding the terms of the integral representation
following formulation is obtained:
v VeV, xV, K; an element of 7, obtained:
Find W; € V,, x V,, such as:

Jy, (@QW)Vdx

fKi VVit(Zle{x,y,z} Gzazv)dx
fpe]“? [Urk SeWD'V + ek, Gr AWV ] 00
+ fper‘?- (% (MF,Ki + IFKiGnF)VVi)tvao-
Jrera G (Mp ;= I Go JR(W)) V00
fFer;n (% (Mg, + IFKiGnF)VVi)tvao-

1 . —
fFe]";n (E (MF,KL' - IFKi GnF)VViLnC)tVOO'

©)

+

where:
Iz represents the incidence matrix between facing surfaces and elements whose entries are given by:

L If PAP~1 is the natural factorization of G, then Gf = pA*P ' where 4" (resp. A7) includes only positive eigenvalues (resp. negative).
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1 if F €K and orientations of ny and ny are match
Iegy =31 if F €K and orientations of nyp and ng do not match,
0 if the face F does not belong to the element K.

where: n is the unitary normal associated to the oriented face F and ny is the unitary normal associated to the cell K.
We also define respectively the jumpl[. ] and average {. } of a vector V to V,, x V,, on the face F shared between two elements K and

K

— _1
W= lecWy + IV, and V3 =3V, + V)
In this study, we consider two classical numerical fluxes, which lead to different definitions for matrices S et M

1) Centered flux: In this case, Sz = 0 and the faces of the boundary we use

I( O3><3 an
y 241”( if F erm
FK | _Nﬁp O3><3

UGnl if F ere

2) Upwind flux

In this case,
([neN, Nt I..N
aEanNrtlp O3><3 I|:71FI n;:'thF OFK nF lf F € Fm
SF - ’ MF]K =4I FK''ng 3%x3
Oax allNt N,
33 FinpTing UG. | if F ere

. 1
for a homogeneous medium, nr =af =alff = >

Finally, we introduce F;; = K; N K;, " = K; N T,,, F* = K; N T, and V;: the set of indices of neighboring elements of ;. So we
can write our formulation in the following form:

v VeV, xV, and for K; an element of 7,:
Find W; € V,, x V,, such as:
fKi (L(,()QVVL)tde - fKi Vl/it(zle{x,y,z} Glalv)dx
1 —
ZjEVi fpi]. (IFKi(SFIFKi +;GnF)VVi)tV

1 —
+ Zjevi fpi]. (IFKi(SFIFK]- +;GnF)W}')tV

+

1 —
+ 6Fia fpia (E (MF,Ki + IFKiGnF)VVi)tVOO'
1 —
8r fua G M, = Ik G )R(W)) Vo
1 —
+ 6Fim fFim (E (MF,Ki + IFKi an)VVi)tVOO-

1 o
= 6Fim fpim (; Mgk, — Ik, GnF)VVimC)tVOO'

where:
1 if [,LNK, =Ff

6a—{ 1 if I,NK;, =F"
Fi 0 if ILNK, =2

and 6Fim = {O if L nK=o

In the next section, we intend to write the variational formulation obtained in a linear system form
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III.LINEAR SYSTEM OF THE PROBLEM
we can reduce our problem as a linear system:
(A-C)X=b

such as A is the square matrix of size:
N =6 x Number of degrees of freedom x Number of cells
d; N¢

this matrix is a sparse matrix defined by block size (6d; x 6d;) such as: fori =1,..,N,:  A(i,i) = D!} — D2 + DI’ x 8 +
DI™ % §m + D[ x5 andfori,j =1, No: A(j,i) = E; x &;
with:
0 if KiNK; =2
by = {

1 else

also, C is a square matrix of the same size as A, defined by block size 6d; x 6d; such as: fori,j =1,..,N.:  C(i,j) = —=C;; %
8pa % (SF],m where:

m =
J

0 if KNnl,=9
6rm =
1 else

X is the vector of size N, Where its components are the unknowns of our problem and b is the vector of size N such as:
b(i) = B{"® x §pm.

where: D} = iw(®; ® Q), D7 =X, (¢} ® Gy), p[™ = (”UFL-"‘ ® E (Mg, + IFKiGnF)])i
DI = (W ® [ M, + Ik, Gup)]). DI = (%1 ® [Tk (Seli, + 3 6up)|): By = Zjev, (¥ ® [Lei,Selewe, + 2 Gup)|):

Cij = % ("Uria ® Ie)l?ii (,{,r}" ® Ie)’ Biim = ZiWiinC = ("Ufim ® E (MF»Ki - IFKiGnF)D W"inc'

IV.NUMERICAL STUDY
This section is devoted to the numerical resolution of Maxwell’s 3D equations in parallel mode detailed in [17].
Since the linear system resulting from the discretization is of very large size and it is implies complex coefficient blocks and
generally, not hermitian, for its resolution, an idea proposed by [38], it is to adopt a decomposition approach Domain. Then the
global problem is decomposed into sub-problems related to each other by specific interface conditions.
We consider here an iterative method of Krylov type as a strategy of resolution. Various methods of this type specified in not
symmetric matrices (see [37]). In this study, we chose a bi-conjugated stabilized gradient method (BiCGStab) in the numerical tests
of this manuscript. The BiCGStab method is introduced in 1992 by van der Vorst [40] and that combines the advantages of BiCG
(Bi-Conjugated Gradient) and GMRES methods (see [36]). Following the mathematical study, developed in the previous chapter, of
the resolution of the Maxwell equations in unbounded domain by the CDGIR method, we present a sample of the numerical results.
We will give some numerical results by making the comparison between the approximate solution and the exact solution. We
introduce the error formula:

1
(”Enumerical _ Eanalyticallliz(n) + ”Hnumerical — Hanalyticalllzz(n))f
1

( | |Eanalytical | |l%2 @ + | |Hanalytical | |IZJ (Q))Z

Error =

©IJRASET: All Rights are Reserved




Let us consider the problem of the diffraction of a plane wave

Electric Field
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Figure 2: Meshing of the volume between a first sphere of
radius R = 1 and a second sphere of radius R = 1.06. A
mesh size h = 0.07
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Figure 4: Maxwell 3D equations: diffraction of a plane wave
by a perfectly conducting sphere: Approximate solution,
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Figure 3: Meshing of the volume between a first sphere of
radius R = 1 and a second sphere of radius R = 1.06. A

mesh size h = 0.07.
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Figure 5: Maxwell 3D equations: diffraction of a plane wave
by a perfectly conducting sphere: Exact solution, wave

wave number k = 5. number k = 5.
TABLE |
VARIATION OF EXTERNAL RADIUS, K=5

Mesh #M1 #M2 #M3

Distance between I,,, and T, 0.2 0.4 0.6

Ronax 0.1 0.1 0.1

Number of elements 204222 476454 830879

Relative error (DG) 0.467 x 1071 0.288 x 1071 0.286 x 1071
Relative error (DG+IR) 0.843 x 1072 0.883 x 1072 0.909 x 1072

Fig. 6 Maxwell 3D equations: diffraction of a plane wave by a perfectly conducting sphere: Exact solution, wave number k=5

0.728162
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A. Performance of methods with centered flux & upwind flux

We will study the performances of two methods, Discontinuous Galerkin method and Discontinuous Galerkin method coupled to an

integral representation, with the centered and upwind flux according to degree of freedom.

We will fix:

1) The distance between T, and [},, at 0.5m.
2) A frequency f = 300MHz.

The comparison results between the two methods DG+IR and DG are illustrated in table Il in the form of the relative error between
the exact solution and the approximate solution either using a centered flux (see also figure 7) or an upwind flux (see also figure 8).

—e — GD Method
—= — GD+RI Method

Erreur laive

2

&
ndl

Fig. 7 Electric Field Error according to degree of freedom: Centered flux

o.07

oos - <

e lle

— = — GD Method
—= — GD+RI Method

ndt

=] iz

Fig. 8 Electric Field Error according to degree of freedom: Upwind flux

TABLE Il. PERFORMANCE OF DG AND DG+IR METHODS WITH CENTERED AND UPWIND FLUX.

Mesh | Method | Boundary faces | Number of elements | Relative error | Time (s)
Centered flux
#M1 DG 13856 68662 6.32151x 102 185
— DG+IR — —_ 4.45810% 102 3127
#M2 DG 19662 112410 4.93931x 102 352
— DG+IR — —_ 1.56624% 102 8794
#M3 DG 22618 135661 4.50915% 102 633
— DG+IR — —_ 9.22504% 1073 12023
#M4 DG 30174 212040 3.59586x 102 541
— DG+IR — —_ 7.42106 x 1073 13167
#M5 DG 42286 351272 2.79567% 102 1436
— DG+IR — —_ 550798 x 1073 19221
#M6 DG 61296 642020 3.29504% 102 822
— DG+IR — —_ 5.42193% 1073 12803
Upwind flux
#M1 DG 13856 68662 6.29630% 102 145
— DG+IR — —_ 2.26847x 102 2973
#M2 DG 19662 112410 4.92687x 102 384
— DG+IR — —_ 1.10472% 1072 8842
#M3 DG 22618 135661 4.49918% 102 469
— DG+IR — —_ 8.94731x 1073 10513
#M4 DG 30174 212040 3.59075% 102 637
— DG+IR — —_ 6.70311x 1073 2984
#M5 DG 42286 351272 2.79336% 102 302
— DG+IR — —_ 5.20943% 1073 8460
#M6 DG 61296 642020 3.29197x 102 73
— DG+IR — —_ 4.82516% 1073 2014

A good improvement of the convergence is observed by using the DG method coupled to an integral representation using either a
centered flux or an upwind flux
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B. Error Depending on the size of the Domain of Study

We are interested in the case where the discretization step h and the waves number k=10 are fixed and by varying the distance
delimited between the boundary of the obstacle T;,,, and the artificial boundary I, by keeping a choice of wavelength equal to 20h.
We will illustrate in a table I11 the evolution of the error for the two methods DG and DG+IR.

0.04

- —& — GD Method
~ —-=—
Bi555: % GD+RI Method

o
5 ©
N 0
n @

/

o
Q
R

Erreur relative

0.015

0.01 |

0.005 | O———————— - ———————— —— = — — =]

102 103 104 105 106 107 108 109 g § |
Size of the domain R

Fig. 9 Error according the size of the domain R

TABLE Il
VARIATION OF EXTERNAL RADIUS, K=5

Mesh Method |Distance between I, and T, | h,,,, |Number of elements Relative error Time (s)
#M1 DG 0.03 0.03 359487 0.380453 x 107* 1280
— DG+IR — — — 0.514891 x 1072 18271
#M2 DG 0.06 0.03 748447 0.285759 x 1071 2370
— DG+IR — — — 0.501781 x 1072 34483
#M3 DG 0.12 0.03 897438 0.273918 x 107* 2343
— DG+IR — — — 0.500574 x 1072 35847

C. Error Depending on the Waves Number k

By fixing the number of finite elements layers with two layers, we are interested in the evolution of the error by varying the waves
number k and by keeping a choice of wavelength equal to 10h.

We will illustrate in a table 11V the evolution of the error for the two methods DG and DG+IR.

TABLE IV
ERROR ACCORDING THE WAVE NUMBER k

Mesh | Method Wave number Distance between| . Number of Relative error
I, and T, elements Time ()
#M1 DG 1 1.2 0.6 6901 0.272x 107! 919
— DG+IR — — — — 0.920 x 1072 13967
#M2 DG 2 0.57 0.3 18352 0.443x 107! 761
— DG+IR — — — — 0.904 x 1072 13221
#M3 DG 8 0.105 0.07 510289 0.353x 107! 3002
— DG+IR — — — — 0.811 x 1072 55002
#M4 DG 12 0.08 0.05 1011662 0.251 x 1071 5501
— DG+IR — — — — 0.804 x 1072 93364
#M5 DG 16 0.054 0.03 800790 0.282x 107! 4009
— DG+IR — — — — 0.801 x 1072 82526

©IJRASET: All Rights are Reserved




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177
Volume 7 Issue XI1I, Dec 2019- Available at www.ijraset.com

0.045 =
i LS —& — GD Method
0.04 H S~ —G — GD+RI Method
i S~
] S~
0.035} i o —
i e
f R
» 003 i o 5
= 4 oS i
= ~ -
2 pozs o 1
g
Y opo2 E
0015 e
001} -
e B—————— -=—-————— -1
0.005 : :
] 2 4 3 ] 10 12 14 16

waves number k

Figure 10: Error according the wave number k.

D. Variation of R where k = 5
The table (V) illustrates the results of comparison, of two methods DG and DG+IR, obtained by varying the outer radius and fixing

the mesh size h.

TABLE V
VARIATION OF EXTERNAL RADIUS, h = 0.1 ANDk =5
Mesh Method Distance between T Number of elements Relative error Time (s)
I, and T,
#M1 DG 0.2 0.1 204222 0.429 < 107! 534
— DG+IR — — — 0.231x 1071 12521
#M2 DG 0.4 0.1 476454 0.288 x 107! 1263
— DG+IR — — — 0.250 x 1071 17934
#M3 DG 0.6 0.1 830879 0.286 < 107! 761
— DG+IR — — — 0.252 x 1071 13627

From the results obtained, it is clear that:
1) The DG+IR method is more efficient.
2) Itis clear that the results obtained using the upwind flus are better.

V. CONCLUSION
In study, we have shown the high efficiency of the DG+IR method. So, since the results obtained are encouraging, the contributions
proposed in this paper for the 3D Maxwell’s equations aim to make a study with a high interpolation order and to think about the
use of other linear system solvers and even to choose a preconditioner in order to to further improve these results
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