

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 8 Issue: I Month of publication: January 2020

DOI: http://doi.org/10.22214/ijraset.2020.1016

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Virtual Machine Optimization using Nature Inspired Algorithms

Madhumala R B¹, Dr. Harshvardhan Tiwari²

¹Assistant Professor, School of Engineering and Technology, Jain University, Bangalore, India ²Associate Professor, CIIRC, Jyothi Institute of Technology, Bangalore, India

Abstract: The piller of cloud computing is the virtualization technology. Virtualization is a technique to share a physical machines resources into many virtual machines.

With the growth in the usage of VMs, VM placement and optimization is the need of the hour. It reduces the operating cost and increases physical machine utilization in a data center. The prime requirement is to reduce the number of active physical machines and increase the number of virtual machines per physical machine without compromising the data quality and data security. This significantly reduces power consumption and cloud operation costs.

This paper provides a comprehensive survey on the algorithms proposed for optimal VM placement and selection in a cloud environment. The algorithms include Ant colony optimizition(ACO), Particle Swarm Optimization(PSO), Genetic Algorithm(GA), Flower Pollination Algorithm(FPA), Fruit Fly Algorithm(FOA), Honey Bee Algorithm9BA). These are a class of nature inspired algorithms which are found useful in selecting and allocating VM resources in a cloud computing environment which requires highly efficient and scalable solutions for dynamically allocating computing resources in the cloud Keywords: Optimization, VM Placement, Ant Colony Optimization, Parallel Swarm Optimization, Nature Inspired algorithm

I. INTRODUCTION

Optimization is ubiquitous and spontaneous process that forms an integral part of our day-to-day life. In the most basic sense, it can be defined as an art of selecting the best alternative among a given set of options. The cloud computing environment provides facility to use computing resources on a need basis for the users. The shared resources needs to be managed efficiently which requires scalable and efficient scheduling and allocation of computing resources. The cloud computing environment is based on IaaS (infrastructure service as a model).

The resources include virtual mechines which are dynamically allocated to the users and this involves finding the phisical hosts on which VMs can be placed as well as migration of VMs across hosts on need basis. Various nature inspired algorithms can be used to achieve this purpose.

Optimization helps to completely utilize all the resources of a currently running physical machine. Optimization helps in reducing the power consumption thereby improving the green computing. In real life situations, there will be many constrains for optimizing the cloud centre. Maximizing the efficiency of the cloud centre and minimizing the undesired factors is really challenging task to solve. Optimization is a trial and error method.

Many new algorithms will be proposed and their results are tested against the desired metrics and the successful ones are continuously modified to get the better results. Broadly we can classify the optimization algorithms as conventional and non conventional algorithms. Much of the work is already done in the conventional algorithms but very few are proposed in non conventional algorithms.

The non conventional algorithms are primarily the Bio or Nature inspired algorithms. These nature inspired algorithms need intelligence and the AI tools are used for inducing the required intelligence into the algorithms.

It is computationally very expensive to find the optimal solutions for type of algorithms.

Therefore, the majority of proposed algorithms are mainly focusing on finding the approximate solutions for VM load balancing problem instead of optimal solutions. For this category, we classify the surveyed algorithms as three types: heuristic, meta-heuristic and hybrid algorithms.

Algorithms such as Swarm Intelligence (SI), Genetic Algorithm (GA) comes under heuristic methods, and Simulated Annealing (SA), Tabu Search (TS) and Hill Climbing comes under meta-heuristic methods.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 8 Issue I, Jan 2020- Available at www.ijraset.com

II. LITERATURE SURVEY

This section provides insight into existing algorithms developed which can be used for optimal virtual michine selection and placement in a cloud environment.

- A. (Said) Aims at scheduling in cloud computing belongs to a category of problems known as NP hard problem due to large solution space. Cloud computing consists of mapping tasks on unlimited computing resources. Nature inspired algorithms in ant colony optimization (ACO), Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) which help in solving NP hard problems are used in this search. Nature inspired algorithm in the area of security to protect information associated with tasks and cloud computing.
- *B.* (Kumar 2018) Presents a critical survey of nature clever algorithms which are used in artificial intelligence and automation in real life domains. Nature inspired algorithms is emerging area of research on algorithm based on physics and biology. This paper explains the phenomena of nature to duplicate in artificial systems. Nature inspired computing and computational intelligence will provide maximum solutions to problems and open new venue in research and development.
- *C.* Nature with its extremely diverse, dynamic, robust and complex and fascinating phenomena is the great source of information for solving problems in computer science. Biology inspired computing has a wide field for research in particular there are great opportunities in exploring a new approach. Nature inspired algorithms are most powerful algorithms which increases the field of future generation computing (Binitha S 2012) presents a broad view of biology inspired optimization algorithms which intern increases the areas where these algorithms can be successfully applied.
- D. Cloud computing needs optimal resource utilization of cloud resource which intern need certain novel scheme with enhanced dynamic resource allocation, collective control, resource management and its maximum distribution in networking and computing resources. The present trend of using virtualization in resource mobilization for data centres using machine migration techniques. (Theja and Babu 2014) Discusses proposed approaches for optimization of resources for cloud infrastructure. Virtual machines with association with physical machine can be effective solution for resource optimization by the consideration of certain increased predictive schemes, load balancing and mapping could be increasing factor in virtualization for better performance.
- *E.* VM placement in cloud is done by focusing on objects like VM allocation time, energy consumption, SLA violation utilisation of resources etc, (Suseela and Jeyakrishnan 2014) the proposed algorithm that is multi hybrid ACO-PSO algorithm reduces the resource wastage and power consumption also provides load balancing in servers. It helps in reduction of server costs.
- F. (Usmani and Singh 2016) Deals with details regarding VM placement algorithm aiming at maximum utilization to reach optimal solution minimization of power consumption. This algorithms aim at studying the workload variability and changing the demands of applications the minimization of trade of between the energy consumption and good performance by using a hybrid technique for serer energy efficiency. This is a two staged process comprising of green computing and overload avoidance.
- G. VM migration is a source intensive procedure as VMs continuously demands appropriate CPU cycles, cache memory capacity and communication bandwidth. The continuous movement becomes essential in managing efficiency of data centres and to smoothen the application service. (Choudhary, Govil et al. 2017) Deals with the problem faced in VM migration as they have to be migrated while they are continuously running this is possible only if VMs are migrated with zero down time. This identifies the types of content that need to be migrated like CPU state, memory content and storage content. This discusses pre-copy, post copy and hybrid technique of VM migration. VM migration approaches are divided into two broad categories Models and Frameworks.
- H. Cloud computing has attained a remarkable growth in every field it makes provisioning, scaling, maintenance of applications and serves a breeze. (Rani and Bhardwaj 2017) Focuses on task scheduling ant colony optimization genetic algorithm PSO and GSA. This survey deals with task scheduling in cloud computing based on current information and sources to build a good mapping relationship between task and resources. It clearly compares the ant colony optimization with other techniques to prove the former as better in comparison.
- I. The main goal of (Challita, Paraiso et al. 2017) is to provide a understanding of existing approaches and algorithms to ensure better VM placement in the contest of cloud computing and identification of future systems. The state of art of VM placement optimization aims at reduction of work, power, cost and prevention of congestion of dataflow. The migration of VM requires a secure connection between source and target servers. This aims at making a way for further work to address this problem for establishing and managing better communication.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 8 Issue I, Jan 2020- Available at www.ijraset.com

- J. Cloud computing which is important development in sharing and pooling of resources over internet services is still in its infancy to achieve improvement much research is required in various directions one is scheduling the goal of scheduling is to trace appropriate resources. This belongs to a category of problem known as NP hard problem. There are no algorithms which produce optimal solution with in polynomial time to solve this problem. Meta heuristic based techniques provide some solution with in required time. Meta heuristic techniques like ACO GA and PSO and two new techniques like League Championship Algorithm (LCA) and BAT Algorithm (getting inspiration from echolocation behaviour of bats yang introduced BAT algorithm) forms these techniques(Kalra and Singh 2015). The comparative analysis of algorithm based on Meta heuristic techniques used for Meta heuristic, optimization criteria, nature of tasks and the environment in which the algorithm is implemented.
- K. (Son and Buyya 2019) Proposes Priority Aware VM Allocation (PAVA) which uses network topology information to allocate VM on the host which is nearest to the requester of the resource. The priority of the task is also considered as parameter. The VMs are grouped based on the type of applications.

Author and year	Parameter used	Limitations	Advantages	conclusion
(Deng, Xu et al. 2019)	Ants, pheromone factor, heuristic factor, initial concentration, maximum iteration	Time complexity is high	Optimal for solving combinatorial problems,	best routes found by the ICMPACO
(Dorigo 1992)	Number of ants		Implements search procedure and feature subset selection	Solving complex optimisation problems and distributed control problems by observing behaviour of ant colonies
(Venkatesan and Karnan 2010)	Mel-filter bank, lenear predictive reflection coefficient, wavelet energy bands	Classification is difficult	Measures the distance between image blocks and domain blocks	Optimal solution using feature subset selection and search procedure
(Dorigo and Gambardella 1997)	Pheromone, optimal number of ants, cooperation among ants	No known limitations	Optimises the classical TSP using ACS	Explains how ant colony system(ACS) works
(Somani, Khandelwal et al. 2012)	Cost, time , migration and resource wastage		VM placement in IASS cloud	ACO may reduce the cost, response time and failed to reduce the number of migrations

III. SUMMARY OF RESEARCH ON NATURE INSPIRED ALGORITHMS

1) Method 1: Ant Colony Optimization(ACO)

Table 1: Ant colony optimizition survey

2) Method 2: Particle Swarm Optimization(PSO)

Nowadays the practical problems are becoming complex day by day. We need to develop such an algorithm which can successfully solve unimodel as well multimodel optimization problems. This survey presents some important developments in the field of PSO which may help the researchers and scientists to study the recent developments in this field and to propose some better versions of PSO variants.

Author and year	Parameter used	Limitations	Advantages	conclusion
(Singh and Chana	Execution time	it not consider		QoS Aware Resource
2015)		multiple levels of		Scheduling in Cloud
		QoS requirements		Environment
(Dashti and	Makespan		It more efficient for	modified PSO algorithm
Rahmani 2016)			scheduling	
(Lalwani, Sharma et	CPU based and		Comparison	Study of variations of PSO
al. 2019)	GPU based		between different	algorithm
	strategies		PSO approaches	
(Xu and Yu 2018)	contraction-	Does not fully	Markov properties	convergence of SPSO is
	expansion	address the issue	of SPSO are	studied using martingale
	coefficient, wave	related to	analyzed	theory
	function	convergence rate		
		and running time		
(Selvaraj, Patan et	Turnaround Time,		Efficient when	VM selection using Swarm
al. 2019)	Waiting time, and		compared to SPSO,	intelligence approach
	CPU utilization		GA, and DPACO	
			models	

Table 2: Particle Swarm Optimization survey

3) Method 3: Genetic Algorithm(GA)

Author and year	Parameter used	Limitations	Advantages	conclusion
(Mosa and Paton 2016)	energy consumption and overall SLA Violations	Qos factors are not considered	reduce response time and maximize resources utilization	ProposesVMplacementforenergy and SLA inclouds
(Mi, Wang et al. 2010)	CPU	Overhead of large searching spaces	Improved cpu utilization, less number of APMs	Reconfiguration searching module
(Gao, Guan et al. 2013)	CPU, network and storage	High computation time	Near optimal solution, energy efficient, resource wastage reduced	ACS meta heuristic applied to VM placement
(Ferdaus, Murshed et al. 2014)	CPU, memory, network i/o	Migration and recnfigaration overhead	Improved overall resource utilization	Vector algebra based capturing of resource utilization
(Tao, Li et al. 2015)	CPU, memory, storage	Bucket code is asymmetric	Energy consumption is reduced	Bucket coding and learning

Table 3: Genetic Algorithm survey

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 8 Issue I, Jan 2020- Available at www.ijraset.com

4) Method 4: Flower Pollination Algorithm

Author and year	Parameter used	Limitations	Advantages	conclusion
(Abdel-Basset and	Tail amplitude, scaling	Standard FPA	Can be applied to	Tension/compression spring
Shawky 2019)	factor, Switching	algorithm not	many areas like	design problem is analyzed
	probability	defined	Neural Networks,	
			Medicine	
(Usman, Ismail et al.	Random walk L,	Finds the near	Finds a better solution	proposes Energy-oriented
2019)	Switching probability,	optimal solution	in terms of energy	Flower Pollination Algorithm
	Maximum iteration,	but not highly	consumption and	(E-FPA) for VM allocation
	Population size	scalable	resource utilization	
(Khurana and Singh	Number of tasks, Number	Higher	Time complexity	Proposes hybrid optimization
2019)	of workflows, Number of	computational	reduced	approach (FPA and GWO
	VM, MIPS, RAM, BW,	cost		algorithm)
	Number of Processors,			
	VM Policy			
(Gamal, Rizk et al.	Pheromone, load balance,	More SLA Time	Finds the optimal PM	VM placement by OH_BAC
2019)	CPU utilization, memory,	per Active Host	based on least power	algorithm
	bandwidth, and the storage	(SLATAH),	consumption	
	size, respectively			
(Joda, Ismail et al.	Power Usage	Multi-Objective	overcome the	proposes Energy-Aware
2018)	Effectiveness, Clustering	approach of FPA	limitation of using	distributed Multi-Cloud
		not considered	single Cloud	Flower Pollination
			datacenter	Optimization (EAdM-FPO)

Table 4: Flower Pollination Algorithm survey

5) Method 5: Fruit Fly Optimisation Algorithm

Author and year	Parameter used	Limitations	Advantages	conclusion
(Naik, Singh et	Migration Time,	SLA violation	reduce the host	Proposes multi-
al. 2018)	Communication Cost, Load	and	migration and	objective Fruitfly
	Balance	communication	consolidates VMs	hybridized Cuckoo
		overhead is not	under-utilized hosts	Search algorithm
		considered		
(Mitić, Vuković	Alpha (source of food),		Higher convergence	Investigates different
et al. 2015)	chaotic variable, success rate		speed and overall	FFOA
			performance	
(Meng and Pan	harmony memory size	Not very	Uses FFOA to solve	self-adaptive repair
2017)	(HMS), harmony memory	efficient when	the MKP	mechanism
	considering rate (HMCR),	used for very	(multidimensional	(SACRO) described
	pitch adjusting rate (PAR),	large sets of data	knapsack problem)	
	distance bandwidth (bw) and			
	the number of improvisations			
	(NI)			
(Wu, Zuo et al.	Entropy, maximum iteration	multi-objective	CMFOA has better	Uses parameter
2015)	number, population size,	optimization not	global convergence	entropy to improve
	random flight distance range	covered	ability compared	the global search
			with other FFOA	ability
			schemes	
(Wang, Liu et al.	level probability policy,	more complex	more effective and	Proposes LP–FOA
2016)	mutation parameter,	than other	robust than the	
	Maxtime, popsize	variants of FOA,	IFOA1, IFOA2, DE,	
			and PSO	

Table 5:	Fruit f	ly Optimisatio	on Algorithm survey
----------	---------	----------------	---------------------

6) *Method 6:* honey bee algorithm:

Author and year	Parameter used	Limitations	Advantages	conclusion
(Upadhyay,	Overhead,		Discuss various	proposes a K-mean
Bhattacharya et al.	Scalability,		algorithms to	clustering method
2018)	Throughput,		handle higher	
	Response Time		throughput,	
			efficient resource	
			utilization, low	
			response time	
(Sudhakar, Jain et	Load on the server,	Storage space not	Higher performance	Large file is divided
al. 2018)	Priority of the task,	considered	with respect to	into multiple pieces
	Size of the file		response time and	and each pieces is
			processing time	treated as separate
				run on different
				servers
(Zanbouri and	QWS(quality-of-	not efficient in	efficient in term of	Proposes honeybee
Navimipour 2019)	web-service),	large-scale data sets	computation time	mating optimization
	cluster, trust degree,		for small data sets	algorithm and trust-
	tag value, service			based clustering
(Verma and Bhatt	Memory, BW,	data processing and		Various nature
2019)	Region, Request	response time are		inspired algorithms
	Per Hour, Data Size	not fully optimized		are discussed
(Verma, Sharma et	Broker cost, Time	Server CPU power,	achieve well	Proposes Honey
al. 2018)	duration,	memory not	balanced load	bee behaviour
	Bandwidth, Ram	considered	across virtual	inspired dynamic
	speed, Overall cost		machines for	load balancing
			maximizing the	(HBB-LB)
			throughput	

Table 6: Honey Bee Algorithm survey

IV. CONCLUSION

In conclusion, this papers serveys different nature inspired algorithms and its application for optimal selection and placement of virtual machines in a cloud based environment. The various parameter considered include memory, bandwidth, RAM speed, computation time and cost etc. Each algorithm has its own limitations and to find a very optimal solution will require developing a new solution based on the specific application requirements.

REFERENCE

- [1] Abdel-Basset, M. and L. A. Shawky (2019). "Flower pollination algorithm: a comprehensive review." <u>Artificial Intelligence Review</u> 52(4): 2533-2557.
- [2] Binitha S, S. S. S. (2012). "A Survey of Bio inspired Optimization Algorithms." International Journal of Soft Computing and Engineering 2(2).
- [3] Challita, S., F. Paraiso and P. Merle (2017). <u>A study of virtual machine placement optimization in data centers</u>.
- [4] Choudhary, A., M. C. Govil, G. Singh, L. K. Awasthi, E. S. Pilli and D. Kapil (2017). "A critical survey of live virtual machine migration techniques." Journal of Cloud Computing 6(1): 23.
- [5] Dashti, S. E. and A. M. Rahmani (2016). "Dynamic VMs placement for energy efficiency by PSO in cloud computing." Journal of Experimental & Theoretical <u>Artificial Intelligence</u> 28(1-2): 97-112.
- [6] Deng, W., J. Xu and H. Zhao (2019). "An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem." IEEE access 7: 20281-20292.
- [7] Dorigo, M. (1992). "Optimization, learning and natural algorithms." PhD Thesis, Politecnico di Milano.
- [8] Dorigo, M. and L. M. Gambardella (1997). "Ant colony system: a cooperative learning approach to the traveling salesman problem." <u>IEEE Transactions on evolutionary computation</u> 1(1): 53-66.
- [9] Ferdaus, M. H., M. Murshed, R. N. Calheiros and R. Buyya (2014). <u>Virtual machine consolidation in cloud data centers using ACO metaheuristic</u>. European conference on parallel processing, Springer.
- [10] Gamal, M., R. Rizk, H. Mahdi and B. E. Elnaghi (2019). "Osmotic Bio-Inspired Load Balancing Algorithm in Cloud Computing." IEEE Access 7: 42735-42744.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 8 Issue I, Jan 2020- Available at www.ijraset.com

- [11] Gao, Y., H. Guan, Z. Qi, Y. Hou and L. Liu (2013). "A multi-objective ant colony system algorithm for virtual machine placement in cloud computing." Journal of Computer and System Sciences 79(8): 1230-1242.
- [12] Joda, U. M., A. S. Ismail, A. Y. Gital and A. Aliyu (2018). <u>Energy-Aware Distributed Multi-Cloud Flower Pollination Optimization Scheme</u>. 2018 Seventh ICT International Student Project Conference (ICT-ISPC), IEEE.
- [13] Kalra, M. and S. Singh (2015). "A review of metaheuristic scheduling techniques in cloud computing." Egyptian informatics journal 16(3): 275-295.
- [14] Khurana, S. and R. Singh (2019). "Workflow scheduling and reliability improvement by hybrid intelligence optimization approach with task ranking."
- [15] Kumar, P. S. P. R. a. M. S. (2018). "A Brief Survey on Nature Inspired Algorithms: Clever Algorithms for Optimization." <u>Asian Journal of Computer Science</u> and Technology 7.
- [16] Lalwani, S., H. Sharma, S. C. Satapathy, K. Deep and J. C. Bansal (2019). "A Survey on Parallel Particle Swarm Optimization Algorithms." <u>Arabian Journal</u> for Science and Engineering 44(4): 2899-2923.
- [17] Meng, T. and Q.-K. Pan (2017). "An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem." <u>Applied Soft Computing</u> 50: 79-93.
- [18] Mi, H., H. Wang, G. Yin, Y. Zhou, D. Shi and L. Yuan (2010). <u>Online self-reconfiguration with performance guarantee for energy-efficient large-scale cloud computing data centers</u>. 2010 IEEE International Conference on Services Computing, IEEE.
- [19] Mitić, M., N. Vuković, M. Petrović and Z. Miljković (2015). "Chaotic fruit fly optimization algorithm." Knowledge-Based Systems 89: 446-458.
- [20] Mosa, A. and N. W. Paton (2016). "Optimizing virtual machine placement for energy and SLA in clouds using utility functions." Journal of Cloud Computing 5(1): 17.
- [21] Naik, B. B., D. Singh, A. B. Samaddar and S. Jung (2018). <u>Developing a Cloud Computing Data Center Virtual Machine Consolidation Based on Multi-objective Hybrid Fruit-fly Cuckoo Search Algorithm</u>. 2018 IEEE 5G World Forum (5GWF), IEEE.
- [22] Rani, P. and A. K. Bhardwaj (2017). "A Review: Metaheuristic Technique in Cloud Computing." <u>International Research Journal of Engineering and Technology (IRJET) Volume</u> 4.
- [23] Said, G. A. E.-N. A. "Nature Inspired Algorithms in Cloud Computing: A Survey." International Journal of Intelligent Information Systems 5.
- [24] Selvaraj, A., R. Patan, A. H. Gandomi, G. G. Deverajan and M. Pushparaj (2019). "Optimal virtual machine selection for anomaly detection using a swarm intelligence approach." <u>Applied Soft Computing</u> 84: 105686.
- [25] Singh, S. and I. Chana (2015). "QRSF: QoS-aware resource scheduling framework in cloud computing." The Journal of Supercomputing 71(1): 241-292.
- [26] Somani, G., P. Khandelwal and K. Phatnani (2012). "VUPIC: Virtual machine usage based placement in IaaS cloud." arXiv preprint arXiv:1212.0085.
- [27] Son, J. and R. Buyya (2019). "Priority-Aware VM Allocation and Network Bandwidth Provisioning in Software-Defined Networking (SDN)-Enabled Clouds." <u>IEEE Transactions on Sustainable Computing</u> 4(1): 17-28.
- [28] Sudhakar, C., R. Jain and T. Ramesh (2018). <u>Cloud Load Balancing Honey Bees Inspired Effective Request Balancing Strategy</u>. 2018 International Conference on Computing, Power and Communication Technologies (GUCON).
- [29] Suseela, B. B. J. and V. Jeyakrishnan (2014). "A multi-objective hybrid ACO-PSO optimization algorithm for virtual machine placement in cloud computing." Int. J. Res. Eng. Technol 3(4): 474-476.
- [30] Tao, F., C. Li, T. W. Liao and Y. Laili (2015). "BGM-BLA: a new algorithm for dynamic migration of virtual machines in cloud computing." <u>IEEE</u> <u>Transactions on Services Computing</u> 9(6): 910-925.
- [31] Theja, P. R. and S. K. Babu (2014). "Resource Optimization for Dynamic Cloud Computing Environment: A Survey." International Journal of Applied Engineering Research 9(24): 26029-26042.
- [32] Upadhyay, S. K., A. Bhattacharya, S. Arya and T. Singh (2018). "Load optimization in cloud computing using clustering: a survey." <u>Int. Res. J. Eng. Technol</u> 5(4): 2455-2459.
- [33] Usman, M. J., A. S. Ismail, H. Chizari, G. Abdul-Salaam, A. M. Usman, A. Y. Gital, O. Kaiwartya and A. Aliyu (2019). "Energy-efficient Virtual Machine Allocation Technique Using Flower Pollination Algorithm in Cloud Datacenter: A Panacea to Green Computing." <u>Journal of Bionic Engineering</u> 16(2): 354-366.
- [34] Usmani, Z. and S. Singh (2016). "A survey of virtual machine placement techniques in a cloud data center." Procedia Computer Science 78: 491-498.
- [35] Venkatesan, S. and M. Karnan (2010). Edge and Characteristic Subset Selection in Images Using ACO. 2010 Second International Conference on Computer Research and Development, IEEE.
- [36] Verma, D. and R. Bhatt (2019). "Implementing Cloud Scheduling Algorithm For Resource Allocation."
- [37] Verma, N., V. Sharma, M. Kashyap and A. Jha (2018). <u>Heuristic Load Balancing Algorithms in Vulnerable Cloud Computing Environment</u>. 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN).
- [38] Wang, L., R. Liu and S. Liu (2016). "An effective and efficient fruit fly optimization algorithm with level probability policy and its applications." <u>Knowledge-Based Systems</u> 97: 158-174.
- [39] Wu, L., C. Zuo and H. Zhang (2015). "A cloud model based fruit fly optimization algorithm." Knowledge-Based Systems 89: 603-617.
- [40] Xu, G. and G. Yu (2018). "Reprint of: On convergence analysis of particle swarm optimization algorithm." Journal of Computational and Applied Mathematics 340: 709-717.
- [41] Zanbouri, K. and N. J. Navimipour (2019). "A cloud service composition method using a trust-based clustering algorithm and honeybee mating optimization algorithm." International Journal of Communication Systems.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)