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Abstract: The change point model is the new powerful tool to determine whether a change has taken place in the process. It 
detects the subtle changes frequently missed by control charts. It controls the change wise error rate. In this paper, we analyze 
the performance of change point approach in case of Half logistic Rayleigh Distribution by considering the Average Run 
Lengths. It concludes by evaluation of change point model in the context of Half logistic Rayleigh Distribution for detecting 
small shifts. 
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I. INTRODUCTION 
The Statistical Process Control aims to detect and diagnose situations where the process gone out of statistical control. This type of 
problem involves two aspects namely process and statistical aspects to have detailed outline of some of its statistical modeling 
aspects see Crowder et al (1987). In fact the status of statistical quality control may be described as one in which the process 
readings appear to follow a common statistical model. One model is that the process is in SQC, the successive process readings Xi’s 
are independent and sampled from the same distribution. When the process goes out of control, it may behave in different ways. In 
general we can have two types of causes, those that affect single process readings and then disappear, and the second type of causes 
or sustainable causes. These causes will continue until they are identified and eliminated. In statistical terminology the isolated 
causes analogous to an out layer. The Shewart  with an R or s-chart is an excellent tool for detecting these special causes, namely 
isolated or sustainable causes. However Shewart control char is less effective for detecting small changes in the process. Standard 
tools for detecting sustain changes are the CUSUM and EWMA chart. This chapter focuses on another, less familiar; method aimed 
at detecting sustained changes is the Change Point formulation when the process averages follow non Normal distribution. 

II. CHANGE POINT METHOD 
At first let us discuss Change Point Method when the process readings modeled by two Normal Distributions, 
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Here the number of observations ‘n’ is fixed in any traditional statistical settings, but this ‘n’ may increase unlimitedly in phase – II 
Statistical Process Control settings. Here both settings i.e. Phase-I and Phase-II will be discussed, with context indicating which of 
the two applies. In the case of in control distribution is N (μ1, σ1

2), the readings follows this distribution up to an epoch τ, the change 
point, at which point they shift to another Normal distribution different in mean i.e. μ1 = μ2, in variability σ1 = σ2 or in both mean and 
variance. In change point method process readings leads to two statistical tasks namely testing task and estimating task. The testing 
task is to conform whether there has indeed being a change. If the change is there then the task of estimating τ, the time at which 
shift occurred. Sometimes we may have to estimate some or all of the parameters  μ1 , μ2, σ1 and  σ2. In all discussions [see Hawkins, 
2003] we work on change point has focused on shifts in mean only. i.e. μ1 ≠ μ2 but σ1 = σ2 = σ, throughout this chapter this type of 
frame work is used here. 
From this change point method we have three scenarios based on the amount of process knowledge viz.,  

1) All parameters μ1, μ2, σ1 and σ2 are known exactly priory. 
2) In control parameters μ and σ are known but μ2 is unknown.  
3) All parameters μ1 , μ2, σ1 and  σ2 are  unknown. 
Throughout our discussions we concentrate on the third scenario namely all parameters are unknown under varying distributions. 
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III.   IMPLEMENTATION OF CHANGEPOINT METHOD 

The formulas below mentioned indicate that the   values are computationally burdensome. For the implementation of the 
method, construct two arrays of values of      
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There is no need to store the running mean  =  , but it will be calculated ‘on the fly’. The observation of the two new table 
entries can be calculated from the numerically stable recursions, when a new observation is added 
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The two sample statistic  are calculated for every possible split point 1≤ j≤ n after finding ,nmaxT . It is easy and more convenient 

to find . The variance explained by a split at point j can be shown to be  
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The Change Point test is known by comparing 2
nh  with maximum of statistics of the allowed j values. 

If 2
max, nT  > 2

nh , leading to the signal of a change point, then it is in significant matter to compute the maximum likelihood estimators  
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(the customary variance estimator), using the value j leading to the maximum. The estimators are somewhat biased even though the 
maximum likelihood estimator are calculated by Hinkley (1970).  

The maximizing j is that which maximizes jnE , so the searching step need only to evaluate jnE  for each j, making further  2
jnT  

calculation necessary only for the maximizing jnE . Thus, while at process reading number n there are n-1 calculations to be 

performed, each involves only about the floating point operations, so even if n were in the tens of thousands calculating  2
max, nT  

would still be a trivial calculation. 
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The ever-growing storage requirement for the two tables might be more inconvenient. It is acceptable to restrict the search for 
change point to the most recent ‘ω’ instance, if this can be limited along with the size of the resulting search. It is done only when 
one must keep a table of only the ‘ω’ most recent  values. 
Willsky and Jones (1976) discussed the ‘window’ approach which is different from above method, in that observations more than w 
time periods into the past are not lost, since they are summarized in the window’s leftmost S and W entry. The lost is the ability to 
split at these old instants. Appropriate values for the table size W may be in the 500 to 2000 range. It is very large as no interesting 
structure is lost, but small enough to compute for each new reading to less than 20000 operations. 

IV.  CHANGEPOINT METHOD WITH HLRD WHEN THE PARAMETERS ARE NOT KNOWN 
Consider the model with none of the parameters known; we can test the presence of change point with another general Likelihood 
ration test. This test is a two sample t-test between before shift and after shift of the sequence, maximized across all possible change 
points; worsely (1979). For a given change point ‘j’ where 1≤ j ≤ n-1, let 
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be the mean of the (n-j) observations after shift. The residual sum of squares i.e. Vjn is given by    
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here we assume that there is a single change point approach at epoch ‘j’,  jnX  and 
jnX  are the Maximum Likelihood Estimators 
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For a stable process, Tjn follows at t – distribution with n-2 degrees of freedom. An out of control signal is obtain as soon as  

   11,Maxnmax,  njforTT jn                                (4) 

exceeds some critical value, hn. 

Hawkins et al. (2003) showed that, for any type I error, hn can be computed by using the Bonferroni inequality. They mentioned that 
the latter is conservative when a process measurement (n) is large. At same time, they provide empirical control limits, hn,α for 
different type I error, α, and various number of process observations. Also, for large n values (n≥1), they proposed the following 
approximation formula for computing hn,α 
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where ln (.) is the natural log function. 
In the case of general change point formulation in which either or both of the parameters μ, σ may shift at the change point τ. 
Sullivan and Woodall (1996) discuss this formulation and the resultant generalized likely hood ratio test. It provides a single 
diagnostic to detect shifts in either the mean or the variance or in both. This has the disadvantage of normality assumption. 
Furthermore, while bounds, approximations and extreme value results are known for the hull distribution of ,nmaxT , there is any 

hardly sample theory for Sullivan and Woodall statistic. Based on these reasons we will consider for the change point formulation to 
mean the formulation in the third scenario i.e. none of the process parameters is consider known exactly. 
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In Phase I, with its static set of data X1, X2,.......Xn, traditional fixed sample statistical methods are appropriate. So, for example, it is 
appropriate to calculate ,nmaxT  for the whole data set and test it against a suitable fractiles of the null distribution of the test statistic 

for that value of n. If the analysis indicates a lack of control in the Phase I data set, more data will be gathered after process 
adjustment until a clean data set is achieved. 
Phase II data are the process readings gathered subsequently unlike the fixed set of Phase I, they are from a never-ending stream. As 
each new reading accrues, the SPC check is re-applied. For this purpose, fixed significance level control limits are not appropriate: 
rather, concern is with the run lengths, both in-and out-of-control. A convenient summary of the frequency of false alarms is the in-
control average run length (ARL), which should be large, and self-contained GLR in which the maximized Likelihood and the 
Likelihood ratio are used both detection and estimation. 
In traditional methods viz., Shewart, CUSUM, EWMA charts, require a Phase I data set to have parameter estimates that can be 
used in the Phase II calculations. These methods require on to draw a connectional line below the Phase I data and separate the 
estimated data [Phase I] from the SPC data [Phase II]. On contrast, in change point formulation one does not assume known 
parameters and hence does not require the estimates produced by a Phase I. Once the preliminaries are complete and the initial 
process stability has been achieved, the change point allows to go seamlessly into SPC in which, at each instant, all accumulated 
process readings are analysed and all data is used to test for the presence of a change point. When process remains in control, it also 
provides on ongoing stream of every improving estimates of the parameters.  
The change point model is a schematic approach in which each new observation Xn is added to the data set, the change point statistic 

 is calculated for the sequence X1, X2,.......Xn. If ,nmaxT  > nh . Where { nh  is a suitably chosen sequence of control limits, 

then we conclude that there has been a change in mean. The important point is the choice of the control limits sequence { nh }. The 

ideal would be a sequence { nh }, such that the hazard or alarm rate [the conditional probability of a false alarm at any ‘n’, given that 

there was no previous alarm] was a constant α, as in case with the Shewart chart. When the hazard rate is constant the in-control 

ARL would be . This approach was used by Margavio et al. (1995) in the context of an EWMA chart in context known parameters 

the false alarm changes point over time. Margavio et al. (1995) derived control limits sequence that would fix the false alarm for 
EWMA chart to a specified value. The present chapter attempts to obtained distribution of ,nmaxT . In fact obtaining distribution of 

,nmaxT  the sequence is far from being able to provide distributional theory sequence. Hence an attempt is made using simulation to 

tackle this problem. 
In fact the change point does not depend on the parameters estimation from Phase I so it is possible to star testing for a change point 
with the third process reading. Table 1 is obtained by simulation of 10 million sequence of length 200 using HLRD . This table 
shows the control limits for α value of 0.05, 0.02, 0.01, 0.005, 0.002 and 0.001, corresponding in control ARLs of 20, 50, 100, 200, 
500 and 1000 for different ‘n’ values ranging from 3 to 200. 

TABLE 1 
CUTOFFS hn, α  FOR SAMPLE SIZE ‘n’ AND HAZARD RATE ‘α’  STARTING AT SAMPLE  3 

n 0.05 0.02 0.01 0.005 0.002 0.001 
3 25.292 63.49674 123.321 247.642 624.7742 1216.23 
4 8.558804 12.59613 17.68718 24.86927 39.61547 55.91356 
5 6.301949 7.863319 9.8749 12.38876 17.23133 21.75909 
6 5.514095 6.361373 7.583182 9.015302 11.8205 14.18867 
7 5.129309 5.657417 6.54837 7.551386 9.597541 11.20801 
8 4.907061 5.258107 5.973179 6.756018 8.42802 9.678984 
9 4.765226 5.004638 5.612189 6.263792 7.719035 8.767264 
10 4.668586 4.831439 5.366973 5.932352 7.248208 8.168689 
11 4.599662 4.706806 5.190913 5.695654 6.915132 7.748683 
12 4.548848 4.613635 5.059243 5.519154 6.668356 7.439337 
13 4.510447 4.541928 4.957656 5.383133 6.478976 7.202961 
14 4.480882 4.485467 4.877333 5.275557 6.329579 7.017067 
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15 4.4578 4.440193 4.81256 5.188685 6.209082 6.867457 

16 4.439593 4.403347 4.759476 5.117323 6.110113 6.744751 

17 4.425129 4.372993 4.715383 5.05786 6.027586 6.642513 

18 4.413588 4.347734 4.678344 5.007711 5.957882 6.556188 

19 4.404364 4.326538 4.64693 4.964982 5.898362 6.482467 

20 4.397002 4.308627 4.620068 4.92825 5.847055 6.418887 

22 4.386538 4.280409 4.576892 4.868679 5.763423 6.315113 

24 4.380215 4.259692 4.544158 4.822862 5.698551 6.234398 

26 4.376777 4.244327 4.518908 4.786917 5.647126 6.17018 

28 4.375401 4.232883 4.499178 4.758269 5.605642 6.118144 

30 4.375522 4.22438 4.483619 4.73515 5.571698 6.07534 

35 4.380065 4.211886 4.457307 4.694134 5.509778 5.996425 

40 4.38808 4.207231 4.442486 4.668587 5.469119 5.94358 

45 4.397793 4.207093 4.434515 4.652407 5.441458 5.906721 

50 4.408296 4.209678 4.43085 4.642231 5.422231 5.880286 

60 4.429917 4.219271 4.431035 4.632685 5.399256 5.846687 

70 4.451075 4.231638 4.436596 4.631261 5.388276 5.828205 

80 4.471185 4.24498 4.44474 4.634106 5.38392 5.818231 
90 4.490104 4.258487 4.454119 4.6393 5.383461 5.813384 
100 4.50785 4.271779 4.464036 4.64581 5.385391 5.811776 
125 4.547614 4.303147 4.48909 4.664533 5.395664 5.815564 
150 4.581928 4.331475 4.512962 4.683972 4.909237 5.824669 
175 4.611978 4.356974 4.535098 4.702784 4.92368 5.835807 
200 4.638651 4.380029 4.555496 4.720569 4.938051 5.847607 

               
It can be noted that from table 1, as the ‘α’ values decreases the control limits ,nh  decreases sharply initially, but then stabilizes. 

Similar type of behaviour can be observed even with Normal distribution; Hawkins (2003). 
It may not be reasonable that start testing at the third observation. However there are cases where the process shift occurs at third 
observation. In practice the particular should gather a modest number of observations to get an initial verification that the Rayleigh 
distribution was a reasonable fit. Then only the formal change point can be applied. In view of this our main simulation is based on 
assumption of 9 readings without testing, with testing starting at the 10th observation, however 9 readings itself is hard to believe in 
a HLRD for the Quality variable. Perhaps it is making reasonable compromise between the conflicting desires. 
The same 10 million sequence of length 200 are used to find out cut offs points up to n =200. The resulting control limits are 
presented in table 2.  
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TABLE 2 
CUTOFFS hn, α  FOR SAMPLE SIZE ‘n’ AND HAZARD RATE ‘α’  STARTING AT SAMPLE 10 

n 0.05 0.02 0.01 0.005 0.002 0.001 
10 4.575367 5.211797 5.906379 6.486067 7.178893 8.077584 
11 4.067423 4.652301 5.288694 5.825742 6.474345 7.307233 
12 3.862369 4.400418 4.987548 5.477806 6.064028 6.824088 
13 3.715902 4.220501 4.772444 5.229281 5.770945 6.478984 
14 3.606051 4.085564 4.611117 5.042886 5.551132 6.220157 
15 3.520612 3.980612 4.485639 4.897913 5.380167 6.018846 
16 3.452261 3.896651 4.385257 4.781935 5.243395 5.857798 
17 3.396337 3.827956 4.303127 4.687043 5.13149 5.726031 
18 3.349734 3.77071 4.234685 4.607967 5.038236 5.616225 
19 3.3103 3.722271 4.176772 4.541056 4.959329 5.523313 
20 3.2765 3.680751 4.127133 4.483704 4.891695 5.443674 
22 3.221575 3.613283 4.046469 4.390507 4.781788 5.31426 
24 3.178855 3.560807 3.98373 4.318021 4.696306 5.213605 
26 3.14468 3.518827 3.933539 4.260031 4.62792 5.13308 
28 3.116718 3.484479 3.892474 4.212585 4.571967 5.067197 
30 3.093416 3.455856 3.858253 4.173047 4.52534 5.012294 
35 3.049223 3.401571 3.793351 4.098061 4.43691 4.908168 
40 3.018029 3.363252 3.747537 4.04513 4.374489 4.834667 
45 2.994832 3.334758 3.713471 4.005771 4.328073 4.780013 
50 2.976908 3.31274 3.687147 3.975357 4.292206 4.73778 
60 2.951017 3.280937 3.649124 3.931425 4.240398 4.676777 
70 2.933218 3.259072 3.622983 3.901223 4.20478 4.634837 
80 2.920229 3.243117 3.603907 3.879183 4.178789 4.604232 
90 2.910332 3.23096 3.589373 3.862391 4.158986 4.580915 
100 2.902541 3.22139 3.577931 3.849171 4.143397 4.562558 
125 2.888793 3.204502 3.55774 3.825843 4.115886 4.530164 
150 2.879818 3.193477 3.54456 3.810614 4.097927 4.509018 
175 2.873499 3.185715 3.535279 3.799891 4.085282 4.494128 
200 2.868808 3.179953 3.52839 3.791932 4.075895 4.483076 

 
V. PERFOMENCE OF THE CHANGEPOINT APPROACH WITH HLRD DISTRIBUTION 

The performance of change point approach in the case of HLRD can be assessed with ARL’s of both in control and following shift 
in a mean. This complication does not arise in the case of Shewart or known parameter CUSUM chart.  In this case the response to a 
shift depends on the number of in control observations preceding it. The reason for this dependence is that the non centrality 
parameter of two sample t statistic depends on the sample sizes. Small values in control period leads to a smaller non centrality 
parameter and hence low values of shift is considered than a longer in control period. 
The above points are illustrated in table 3 by considering α value 0.02, 0.01, 0.005 and 0.002. A shift of size δ ∈ {0, 0.5, 0.6, 0.75, 
1.25, 1.5, 1.75, 2, 2.25, 2.5, 3} was introduced τ ∈ {10, 25, 50, 100, 250}.  
The values presented in the table 3 are the ARL’s of the change point procedures. These were calculated by simulating a data series, 
adding the shifts to all Xi’s, i > τ and counting the number of readings from the occurrence of the shift until the chart is signaled. 
Any sequence which is signaled before time τ was discovered the appropriate formula hn is used. So that the in control ARL’s 
differs from normal. 
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Table 3. The arl of the change point procedure when shift occurs at the ‘start’ position with  size ‘ δ ’ 

It is clear from the table that the ARL’s are affected by the amount of history is gathered before the shift, with a faster response 
carrying with more history. These ARL’s are also depends α and δ. It can also be observed that α is large or δ is large the ARL tends 
to be smaller, as one would anticipating.     

VI.  CONCLUSIONS 
In the this paper control limits or cut off points [ ,nh ] are obtained by simulation of 10 million sequence of length 200 with the 

process readings start at 3 and 10 are obtained in the context of HLRD. i.e. when the phenomenon under consideration follows 
HLRD respectively.  
This paper also provides ARL’s of the change point procedure obtained by HLRD. 
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α start 0 0.5 0.6 0.75 1.25 1.5 1.75 2 2.25 2.5 3  
0.02 10 3.0392 20.5041 35.9039 103.2116 144.9992 42.0468 20.7980 12.9989 9.2848 7.0770 4.7150  
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0.01 10 3.750405 24.0928 42.1583 121.500 170.1435 49.37897 24.43882 15.25775 11.157980 8.639493 0.977985  
  25 3.635815 24.4428 38.50814 110.9017 160.4053 42.06973 15.38824 11.57749 8.634698 5.64493 6.287495  
  50 4.439894 23.7428 33.53981 102.4963 149.1053 32.72732 8.623937 10.27493 7.596984 4.6993 2.13432  
  100 2.993735 24.2428 28.76814 91.06063 136.0235 26.12732 6.739369 5.57493 5.196984 3.643002 66.93098  
  250 7.245406 22.4428 22.50814 78.99627 116.4053 19.46973 5.693686 2.549299 2.219843 3.243002 0.814144  

0.005 10 1.269674 27.6815 48.41269 140.6008 196.62105 56.71116 28.0796 17.76664 12.442140 9.82698 2.535413  
  25 20479.63 29.1315 42.97927 128.8478 176.4987 47.79157 18.46047 13.16641 9.421419 5.8198 10.77791  
  50 0.500191 28.8315 39.1372 123.3685 145.9573 33.39157 11.79605 9.740653 7.464186 3.848002 1.331927  
  100 1.017274 29.4315 33.90272 103.5747 119.4042 267.9457 8.396047 8.140653 4.764186 3.5198 32.46803  
  250 22.66992 25.9315 26.48204 93.39578 95.95734 17.34567 6.796047 4.740653 2.791858 2.767698 0.893502  

0.002 10 0.716479 32.67551 57.28555 163.7121 230.071 67.06878 33.14246 20.75273 14.90403 11.39675 4.355852  
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  50 2.014705 39.67551 47.37224 135.7042 130.1663 33.71776 14.74551 7.75326 9.153275 5.217525 5.234484  
  100 39.82295 42.67551 42.23632 115.0114 91.13336 23.11776 11.14551 5.725959 6.853275 3.425248 2.721924  
  250 0.362897 46.42551 31.66053 95.81359 22.73596 16.44262 7.70512 2.77596 3.702482 2.127481 13.730520  



 


