

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 8 Issue: II Month of publication: February 2020 DOI: http://doi.org/10.22214/ijraset.2020.2030

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Heat Assistive Machining Techniques: A Review on Turning Operation

C. Rajesh¹, Dr. B. Jayachandraiah²

¹Assistant Professor, AMET University-Chennai, India-603112 ²Professor, SKIT College Srikalahasti, India-517644

Abstract: In the modern times, there is a need of materials with very high hardness and shear strength in order to satisfy industrial requisites. So various materials which serve the properties are manufactured. Costly cutting tools are required to machine those materials. On account of increasing demands in industries, any furtherance of traditional machining process or any other deployment of additional technique is directly related to higher productivity. Thermal machining is other possible path for machining those hard materials using low cost cutting tools.

The present paper deals with recent trends and challenges faced by the metal cutting industries in the case of machining of very hard materials. And a detailed review on thermal machining process specially in terms of turning operations were catalogue. The paper also focuses on the overview of thermal assistive machining process, machinability and reasons for development of new cutting tools in detail.

Keywords: Hard materials, heating methods, machinability, thermal machining

INTRODUCTION

Manufacturing processes are classified into two main groups and they are primary and secondary manufacturing processes. The primary ones provide basic shape and size to the material as per need of the designer. Secondary manufacturing processes provide the final shape and size with appropriate control on dimensions, surface characteristics etc. However, material removal processes are mainly secondary manufacturing processes.

I.

Material removal processes also divided into two groups and they are traditional and Non - traditional machining processes. Conventional machining is a mechanical energy based process and Non-conventional machining utilizes other forms of energy like thermal, electrical and chemical basis.

Heat machining method comes under thermal metal removal processes. The material removal rate decreases with an increase in hardness of the work material. It has been realized that such materials are difficult to machine by traditional methods and therefore the cutting business not only costly but also results into poor surface finish, dimensional tolerances and minimal tool life.

II. PRESENT MACHINING TRENDS & CHALLENGES IN INDUSTRY

With expansion in science and technology, there is a need of materials with very high hardness and shear strength in the market. So many materials which satisfy the properties and design requirements are manufactured. Development of difficult and harder to cut materials such as hastalloy, carbides, high manganese steel, stainless steel, heat resisting steels and various other high strength temperature resistant (HSTR) alloys.

These are used in aerospace industry, nuclear engineering and other industries due to their hardness, high strength to weight ratio and heat resisting quality.

In manufacturing industry, machining of hard materials using grinding process results in low material removal rate, not flexible and time consuming.

Hard turning operations comprises of new tool materials, which are 15-20 times costlier than others. Utilizing cryo-machining in the cutting of hard materials also includes high investment cost and skilled operator. Again non-traditional machining processes are high in investment cost with low material removal rates.

The industries always face problems in machining/manufacturing of components because of some stress produce in the metal being cut. Non-traditional processes mean in the sense that they do not employ traditional tool for material removal but they use some form of energy for machining. Advance non-conventional machining methods, its main-advantages and disadvantages are as following.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 8 Issue II Feb 2020- Available at www.ijraset.com

Machining methods	Advantages	Disadvantages
Electro chemical	Difficult-to-machine geometries	Initial tooling can be costly &
machining	Little or no tool wear	timely, Environmentally harmful
Abrasive jet machining	Easy machining of hard materials	Low MRR
	Investment cost is low	Nozzle life is less
Electro beam machining	Easy machining of highly reactive	Low MRR
	materials	High skill operator required
	Produce very small holes (100µm-2mm)	
Electro discharge	No distortion to machined parts	Low MRR
machining	Complicate shapes can produced	Rapid tool wear
Laser beam machining	Produce extreme edge parts or zero edge Thermal expansion- proble	
	deformation, Reduces wastage	Costly to run

Table 1: Non-conventional machining methods, its main-advantages and disadvantages

III. LITERATURE REVIEW

T 11 A T .	•		•	C 1	• •	
Table 2: Literature	review	summary	7 1n	referred	iournals: -	-

Author's name	Work/tool material	Heating method/Analysis	Studied	Most Significant	Detections
		,,,,		affecting factors	
J.Goudhaman	Nickle-chromium steel(600HB)	Gas flame heating/	Surface roughness,	Cutting speed	Power required is reduced and tool
(2007)	SNMG carbide insert	Taguchi/Minitab	tool life	0.1	life increase by 14.83 %
M.Davami	AISI 1060 steel	A gas flame heating/	Surface roughness,	Temperature	Increase in temperature tends to less
(2008)	TNNM 120408-SP10	Plot Analysis	tool temperature	Cutting speed	variation in Ra,
Dr K. P. Maity	High-manganese steel	Automatic gas flame	Surface roughness,	Spindle	Tool life increases with decrease in
(2012)	Carbide tool	heating/Taguchi/ANOVA	tool life	speed(rpm)	yield stress of work piece, but
					increases tool wear rate
S.Ranganathan	Stainless steel (316 type)	LPG flame heating up to	Surface roughness,	Feed rate,	Surface improvement can be
T.senthilvelen	Tungsten carbide(WC) tool	600 ⁰ C/Grey relational	MRR and tool life	Cutting speed	achieved by combination of optimal
(2011)		/ANOVA			parameters
Maher baili,	Titanium alloy	Semi-conductive inductor	Cutting forces	Temperature	Surface micro structure may be
Vincent Wagnor	Ti-5553/CNMG 160612-QM	type heating up to $750^{\circ}C$ /	Tool wear	Cutting speed	changed
(2011)		Correlational analysis	Surface integrity		
Mrs.swetha patil,	En 36 (40 HRC)/	Oxy-acetylene flame	Surface roughness,	Temperature	Hot machining may also use for
Nithin K.kamble	TiAlN coated carbide insert	heating up to 400° C/ DOE	MRR and tool wear	Depth of cut	finishing operation too
(2013)		/ Grey relational			
Vikas Upadhyay,	Ti-6Al-4V alloy/	LPG flame heating up to	Cutting forces	Temperature	Cutting forces reduces with increase
P.K.Jain	CNMG 120408	500 ⁰ C / Chip analysis	Surface roughness		in temperature, but surface roughness
(2013)	Coated carbide tool		Flank wear		may increases
Venkatesh Ganta,	15-5PH martensitic	Oxy-acetylene flame	Surface roughness,	Feed rate	Hot machining reduces cutting forces,
D. Chakradhar	Stainless steel (40HRC)/	heating up to 350^0C / S/N	MRR	Cutting speed	which also reduces Ra with suitable
(2014)	K313 carbide tool insert	ratio / Grey relational			cutting parameters
Ketul M. Trivedi,	AISI 4340 steel	Oxy-acetylene flame	Surface roughness	Feed rate	Hot machining increases ductility of
Jayesh V. Desai(2014)	(90HRC)/	heating up to $600^0\text{C}/\text{DOE}$		Cutting speed	work material, which increases feed
	Tungsten carbide tool insert	/ ANOVA			rate and production rate.
MR. Jadhav,	Al/SiCp (MMC)/	Resistance heating(RT) up	Surface finish	Feed rate	Surface of MMC material is damaged
UA. Dabade	PVD coated CNMG120408	to 100° C / Taguchi method	Flank wear	Depth of cut	with increase in temperature
(2016)	insert	/ Grey relational			
Harpreet Singh,	En 8 steel/	Butane torch flame heating	Surface roughness,	Temperature	It is easy to shear of the hard
Er. Sandeepsharma	Carbide insert CNMG12408	up to 430° C / Comparison	MRR		materials, hence with minimum Ra
(2016)		b/w dry and thermal			and Maximum MRR
		machining			
Adamu Umar Alkali,	Stainless steel(316L)/	Oxy-acetylene flame	Surface finish	Focus height	Controllable variables of heating
Turnad Lenggo Ginta	Uncoated (WC-CO) insert	heating up to 600° C / RSM	Tool life	Pressure	method also affects the system of
(2016)		/ ANOVA		Time	heating the workpiece
L. Ozler,	Austentic manganese steel	LPG flame heating up to	Tool life	Cutting speed	Poor conductivity materials gives
A.Inan(2000)	(243HB)/	600 ⁰ C / mathematical		temperature	poor surface finish in hot machining
	M20 sintered carbide tool	model			methods
Nihat Tosun,	High manganese steel (200 HB)/	LPG flame heating up to	Surface finish	Cutting speed	Moderate temperatures are optimum,
× 10.0 1 (2000)	M20 sintered carbide tool	600 ⁰ C / Taguchi method	Tool life	temperature	if we consider the micro-structure &
Latif Ozler(2004)					cost of the work piece

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 8 Issue II Feb 2020- Available at www.ijraset.com

IV. OVERVIEW OF THERMAL ASSISTIVE MACHINING PROCESS

In heat machining, heat is applied to the work piece to reduce its shear strength in the shear zone. The hot machining has become very useful in the machining of alloys like High strength temperature resistant. Hot machining has two functions to perform, one to increase the machinability of difficult to cut materials. Second, to improve tool life this actually improves the rate of production.

A. Main Requirements Of Heat Machining Process

- 1) External heat is applied to just ahead of the cutting edge, i.e. where the deformation of the material is maximum.
- 2) A fine temperature control device should be there in the method of heat supply, i.e. to avoid distortion to uncut material.
- 3) A large specific heat input must be supply by the heat source to create a rapid response in temperature a head of the tool.
- 4) The Heating method should be low in initial and maintenance cost and essentially not hazard to the operator.

There are various methods of heat machining which are subjected to requirements. Here the temperature of the work piece is heated to several hundred or thousand degree Celsius above ambient temperature.

Table 5. Various methods of near machining			
Heating methods	Advantages	Disadvantages	
Furnace heating	Simple and relatively cheaper	Distortion on cooling	
Flame heating	Large specific heat inputs are possible	Localization of heat is difficult	
Arc heating	High specific heat inputs can be supplied	Heating is not very uniform	
Resistance heating	Easy to handle No distortion on cooling	Temperature obtainable is limited	
Plasma arc heating	A very high specific heat is achieved	Heating is not stable	
Inductive heating	Quick temperature raise	Depth of penetration is limited	
Radio-frequency resistance	Heating takes place over small area	Work piece must be magnetic	
heating			
Electric current heating	Easy adaptable and control	Tool material must be magnetic	
Friction heating	Initial and operating costs low	Cannot be used for intricate shapes	

Table 3: Various methods of heat machining

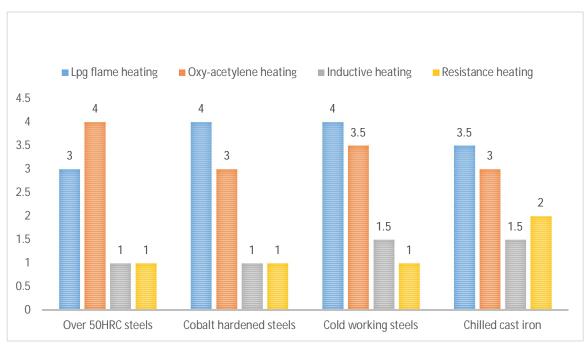


Figure 1 Different heating techniques used in referred journals for Heat Machining Group materials

B. Machinability Of Heat Assisted Machining

Machinability is the property of a system that indicates how the material is easily machined at low cost. Machinability concept always look into quantitative measures of tool life in minutes, cutting forces and power consumed, quality of surface finish, chip formation and material removal rate.

Production process can affect some functional parameters such as mechanical properties (strength, hardness, ductility and resistance to environment), tolerances, resistance to corrosion, electrical properties, thermal properties, surface finish and lastly appearance. High strength means it increases metal cutting forces, specific energy, and cutting temperatures. High hardness increases abrasive wear, so tool life reduces and high ductility results tearing of metal as chips, causing wastage problems and poor surface finish.

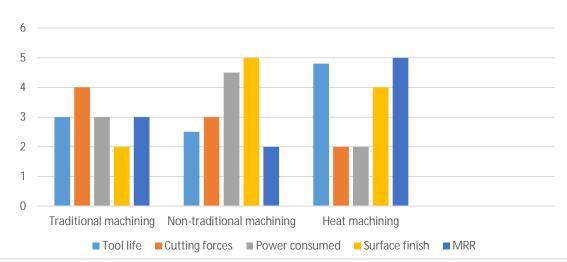


Figure 2 Machinability rating of difficult-to-cut materials in referred research journals

C. Reasons For Development Of Cutting Tool

The high operating temperatures in heat machining method imparts softening on the material, which eases the machining process and next reduces high changing cost and sharpening cutting tools.

- 1) Global Vying: Individual machining applications required separate cutting tools, the engineers or machinist do errors when choose tooling in calculating economic savings based on low cost per tool, preferably than on long tool life and maximized productivity. According to metal cutting science, the best cutting tool includes the following attributes; harder than work piece, impact and wear resistant, high temperature stability and chemically inactive to work piece and cutting solution. It is impossible that one cutting tool having all these qualities, because for example ceramic cutting tools has high temperature resistant, but has low impact resistant.
- 2) *Quality and Reliability:* The development of newer and newer cutting tools is to obtain good surface finish, high accuracy and dimensional tolerances in machining.
- 3) Cost: To reduce non-productive cost and unnecessary cost.
- 4) *Efficiency:* To control cutting speed, reduce cutting time and improve tool life. In traditional machining process softening of work piece is more effective way than strengthening the cutting tool.

V. CONCLUSION

Heat machining techniques solely reduce the development of new cutting tools for conventional machining and applications of nonconventional machining processes. The materials over 50HRc hardness steels, cold working steels (high manganese steels and Austenitic manganese steels), cobalt surface hardened steels and chilled cast iron are the heat machining group of materials. Oxyacetylene gas flame technique is frequently adapted for high hardness materials in the past research works due to its low equipment cost and feasibility. Thermal assistive machining process have maximum machinability ratings compare to traditional and nontraditional machining process. On other side the micro-structure of work material damages, so micro-structural morphological studies have been expected from the present researchers of this domain.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 8 Issue II Feb 2020- Available at www.ijraset.com

REFERENCES

- Venkatesh Ganta, D Chakradhar "multi objective optimization of hot machining of 15-5ph stainless steel using grey relational analysis" procedia materials science 5, 1810 – 1818, 2014.
- [2] K.A.Patel, S.B.Patel, K.A.Patel "performance evaluation and parametric optimization of hot machining process on EN-8 material" international journal for technological research in engineering volume 1, issue 10, june-2014.
- [3] S. Ranganathan, T. Senthilvelan "multi-response optimization of machining parameters in hot turning using grey analysis" int j adv manuf technol ,56:455–462, 2011.
- [4] Maher Baili, Vincent Wagner, Gilles Dessein, Daniel Lallement "an experimental investigation of hot machining with induction to improve ti-5553 machinability" applied mechanics and materials, vol. 62. Pp. 67-76. Issn 1660-9336, 2011.
- [5] Dr k. P. Maity, Mr parhi, Mr. Somanath manna "experimental investigation and stastical evaluation of hot-machining operation using taguchi method" ijaea, volume 2, issue 4, pp 32-38, 2009.
- [6] M. Davami, M. Zadshakoyan "investigation of tool temperature and surface quality in hot machining of hard-to-cut materials" world academy of science, engineering and technology 22, 2008.
- [7] J. Goudhaman "Experimental Investigation of Hot Machining Prosses of High Manganese Steel Using SNMG-Carbide Inserts by Design of Experiments Using Taguchi Method" applied mechanics and materials, vol. 51. Pp. 47-54. Issn 1660-9336, 2008.
- [8] M.A. Lajis, A.K.M.N. Amin, A.N.M. Karim, H.C.D.M.Radzi, T.L. Ginta, "Hot machining of hardened steels withcoated carbide inserts", American Journal of Engineering and Applied Sciences, Vol. 2, 2009, pp. 421–427.
- [9] Mrs.swetha patil,Nithin K.kamble "Multi-response optimization of Hot machining process using Grey relational analysis method", Indian journal of applied research, Vol. 3, Issue: 10, ISSN -2249-555X, oct 2013.
- [10] Vikas Upadhyay, P.K.Jain and N.K. Mehta, "Machinability studies in Hot machining of Ti-6Al-4V alloy", Advanced materials research journals, volume 622-623(2013) pp 361-365
- [11] Ketul M. Trivedi, Jayesh . Desai, Kiran Patel " Optimization of surface roughness for hot machining of AISI 4340 steel using DOE method", International journal of Advance engineering and research development(IJAERD) volume 1, Issue 5, may 2014,e-ISSN: 2348-4470
- [12] M. R Jadhav and U A Dabade "Multi-objective optimization in hot machining of AL/SiCp MMC's", IOP Conf.series: Materials science and engineering 114 (2016) 012122
- [13] Harpreet Singh, Er.Sandeep sharma, Er.Mohit gaba "Analysis of surface roughness and Material removal rate in dry and thermal assisted machining of EN8 steel", International journal of engineering sciences and research technology, arch 2016,ISSN: 2277-9655
- [14] Orhan Çakır Erhan Altan Hot Machining of High Manganese Steel: Review 12th International Research /Expert Conference "Trends in the Development of Machinery and Associated Technology" TMT 2008, Istanbul, Turkey, 26-30 August, 2008
- [15] Ravindra Patel, A.S.Patel, U.J.Patel Optimization Of Hot Machining Process Parameters For EN24 Material International Journal of Advance Research in Engineering, Science & Technology(IJAREST), ISSN(O): 2393-9877, ISSN(P): 2394-2444, Volume 2, Issue 5, May- 2015

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)