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An attempt has been made to establish the relationship between various energies in Magnetohydrodynamic triply diffusive 
convection problem, the configuration being considered analogous to thermohaline convection of Stern (Stern, M.E., Tellus. 
12 [9], 172-175) type. The established relationship shows that the total kinetic energy associated with a disturbance exceeds 
the sum of its total magnetic and thermal energies in the parameter regime  푸흈ퟏ

흅ퟐ
+ |푹|흈

흅ퟒ
≤ ퟏ,	 where Q, 흈, 흈ퟏ  and R represent 

the Chandrasekhar number, the thermal Prandtl number, the magnetic Prandtl number and the Rayleigh number 
respectively. Further, this result is valid for the quite general nature of the bounding surfaces. 
Keywords: Triply diffusive convection; Chandrasekhar number; Lewis number; Prandtl number; Rayleigh number. 

I. INTRODUCTION 

Convective phenomena which are driven by the differential diffusion of two properties such as heat and salt is known as 
thermohaline convection or more generally double diffusive convection. Double diffusive convection has matured into a subject 
possessing fundamental departure from its counterpart, namely single diffusive convection and its studies have importance in 
the fields of oceanography, limnology, chemical engineering, geophysics and astrophysics etc. For reviews of this subject one 
may be referred to Turner [10], Turner [11], Huppert and Turner [6], Brandt and Fernando [3].                                                                                                               
Two fundamental configurations have been studied in the context of thermohaline instability problem, one of Veronis [12], 
wherein the temperature gradient is destabilizing and the concentration gradient is stabilizing and another by Stern [9], wherein 
the temperature gradient is stabilizing and concentration gradient is destabilizing. The main results derived by Veronis and Stern 
for their respective configurations are that both allow the occurrence of a stationary convection or an oscillatory convection of 
growing amplitude, provided the destabilizing temperature gradient or concentration gradient is sufficiently large. More 
interesting double diffusive phenomenon appears if the destabilizing thermal or concentration gradient is opposed by the effect 
of vertical magnetic field. 
Chandrasekhar [4] in his investigation of the hydromagnetic Rayleigh - Benard convection problem, sought unsuccessfully the 
regime in terms of the parameters of the system alone in which total kinetic energy associated with a disturbance exceeds the 
total magnetic energy associated with it, since these considerations are of decisive significance in deciding the validity of the 
‘principle of the exchange of stabilities’ (Banerjee et al. [1]). Banerjee and Gupta [2] showed that in the parameter regime	 ≤
1, the total kinetic energy associated with a disturbance is greater than the total magnetic energy associated with it. Banerjee et 
al. [1] also extended these energy considerations to a more general problem, namely, magnetothermohaline convection problem 
of Stern type and proved that in the parameter regime + | | ≤ 1, the total kinetic energy associated with a disturbance 
exceeds the sum of its total magnetic and thermal energy. The present analysis extends these energy considerations to another 
more complex problem, namely, magnetohydrodynamic triply diffusive convection problem (analogous to 
magnetothermohaline convection of the Stern type) wherein one stabilizing heat component and two destabilizing concentration 
components have been considered. We establish that in the parameter regime + | | ≤ 1, the total kinetic energy associated 
with a disturbance exceeds the sum of its total magnetic and thermal energies. Further, this result is valid for quite general 
nature of the bounding surfaces. Furthermore result of Banerjee et al. [1] follows as a consequence. 

II. MATHEMATICAL FORMULATION AND ANALYSIS 

A viscous finitely heat conducting Boussinesq fluid layer of infinite horizontal extension is statically confined between two 
horizontal boundaries 푧 = 0	and	푧 = 푑 which are respectively maintained at uniform temperatures 푇 	and	푇 (< 푇 ) and 
uniform concentrations	푆 , 푆 	and		푆 (< 푆 ),푆 (< 푆 )	under the simultaneous presence of a uniform vertical magnetic 
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field,		퐻⃗ (see Fig 1).                                      

																																															    

Fig.1 Physical configuration 

The governing equations and boundary conditions for Magnetohydrodynamic triply diffusive convection problem, when a 
uniform vertical magnetic field opposite to gravity is imposed upon the system, in their non-dimensional forms are given by 
(Griffith [5] and Prakash et al. [7]) 

 (퐷 − 푎 ) 퐷 − 푎 − 푤 = 푅푎 휃 − 푅 푎 휙 − 푅 푎 휙 − 푄퐷(퐷 − 푎 )ℎ ,                 (1) 

(퐷 − 푎 − 푝)휃 = −푤,                                                                                                           (2) 

퐷 − 푎 − 휙 = − ,                                                                                                      (3) 

퐷 − 푎 − 휙 = − ,                                                                                                      (4) 

퐷 − 푎 − ℎ = −퐷푤,                                                                                                   (5)                                                                                                                                           

with

푤 = 0 = 휃 = 휙 = 휙 	(on	both	the	boundaries),
	퐷 푤 = 0				(On	a	dynamically	free	boundary),					

퐷푤 = 0				(On	a	rigid	boundary)			
ℎ = 0			(On	both	the	boundaries	if	the	regions	outside	the	fluid	are	perfectly	conducting)	
퐷ℎ = ∓푎ℎ 									(On	both	the	boundaries	if	the	regions	outside	the	fluid	are	insulating). ⎭

⎪
⎬

⎪
⎫

                   

                                                                                                                                                 (6) 

where 푧 is the real independent variable such that	0 ≤ 푧 ≤ 1. 퐷 =  is the differentiation with respect to z, 푎 > 0	is a 

constant,	휎 > 0   is a constant, 휎 > 0	is a constant, 휏 > 0	is a constant, 휏 > 0	is a constant, 푅 > 0,	 푅 	 > 0,푅 > 0  are 
constants, 푄 > 0	is a constant, 푝 = 	 푝 + 푖푝   is a complex constant such that  푝 	and	 푝   are real constants and as a 
consequence the dependent variables 푤(푧) = 푤 (푧) + 푖푤 (푧), 휃(푧) = 휃 (푧) + 푖휃 (푧), 휙 (푧) = 휙 (푧) + 푖휙 (푧),휙 (푧) =
휙 (푧) + 푖휙 (푧), ℎ (푧) = ℎ (푧) + 푖ℎ (푧)	are complex valued functions of the real variable z such that 푤 (푧), 푤 (푧), 	휃 (푧),
휃 (푧), 	휙 (푧), 휙 (푧), 휙 (푧), 	휙 (푧), ℎ  and ℎ 	are real valued functions of the real variable z. The meaning of the 
symbols from the physical point of view are as follows: z is the vertical coordinate, 푎 > 0	is square of the wave number, 휎 = 	   

is the Prandtl number, 휏 = 	and	 휏 =  are the Lewis numbers for the two concentration components with mass 

diffusivities 휅 	and	휅  respectively and 휅 is thermal diffusivity, R  is the Rayleigh number, 푅 	and	푅  are concentration 
Rayleigh numbers for the two concentration components, Q is the chandershekhar number, p is the complex growth rate, w is 
the vertical velocity, 휃 is the temperature, 휙 , 	휙  are the two concentrations and ℎ  is the magnetic field. It may further be 
noted that Eqs. (1) – (6) describe an eigenvalue problem for 푝 and govern magnetohydrodynamic triply diffusive convection.  

we prove the following Theorem: 

Theorem: If (푤, 휃,휙 ,휙 ,ℎ , 푝), 푝 ≥ 0	with	푅 > 0,푅 > 0,푅 > 0,푄 > 0,	is a solution of Eqs. (1) - (5) together with 

푑 

푋 

푍 
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푇  
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boundary conditions (6) and  + | | ≤ 1,	 then 

 ∫ (|퐷푤| + 	푎 |푤| )푑푧	 > 	푄휎 ∫ (|퐷ℎ | + 	푎 |ℎ | )푑푧 + |푅|푎 휎 ∫ |휃| 푑푧.              (7) 

Proof: Multiplying Eq. (5) by ℎ ∗(the superscript ∗ denotes the complex conjugation) throughout, integrating the resulting 
equation, by parts, over the vertical range of z, and making use of boundary conditions (6), we get 

푎{(|ℎ | ) + (|ℎ | ) } + ∫ (|퐷ℎ | + 	푎 |ℎ | )푑푧 + ∫ |ℎ | 푑푧 = −∫ 푤퐷ℎ ∗푑푧.     (8) 

Equating the real parts of Eq. (8), we obtain    

 푎{(|ℎ | ) + (|ℎ | ) } + ∫ (|퐷ℎ | + 	푎 |ℎ | )푑푧 + ∫ |ℎ | 푑푧 = Real part of (−∫ 푤퐷ℎ ∗ 푑푧)     

≤ ∫ 푤퐷ℎ ∗푑푧   ≤ ∫ |푤||퐷ℎ |푑푧    ≤ ∫ |푤| 푑푧
/

∫ |퐷ℎ | 푑푧
/

.             (9)             (using Schwartz inequality)          
                                                                                

 Since 푝 ≥ 0, therefore we have from inequality (9), that 

∫ |퐷ℎ | 푑푧 < ∫ |푤| 푑푧
/

∫ |퐷ℎ | 푑푧
/

  

or	 ∫ |퐷ℎ | 푑푧
/

< ∫ |푤| 푑푧
/

.                                                                                        (10) 

Utilizing inequality (10) in inequality (9), we have 

∫ (|퐷ℎ | + 	푎 |ℎ | )푑푧 <∫ |푤| 푑푧 .                                                                               (11) 

 Since 푤(0) = 0 = 푤(1),  therefore using Rayleigh Ritz inequality (Schultz [8]), we obtain 

∫ |퐷푤| 푑푧 ≥ 휋 ∫ |푤| 푑푧 .                                                                                                           (12) 

It follows from inequality (11) and (12) that 

∫ (|퐷ℎ | + 	푎 |ℎ | )푑푧 < ∫ |퐷푤| 푑푧 < ∫ (|퐷푤| + 	푎 |푤| )푑푧.                            (13) 

Now multiplying Eq. (2) by 휃∗ and integrating the resulting equation by parts for a suitable number of times and making use of 
the boundary condition (6) and equating the real parts of resulting equation, we have 

	∫ (|퐷휃| + 	푎 |휃| )푑푧 + 푝 ∫ |휃| 푑푧 =  Real part of −∫ 휃∗푤푑푧  

                                        ≤ ∫ 휃∗푤푑푧       ≤ ∫ |휃||푤|푑푧     

                                         ≤ ∫ |휃| 푑푧
/

∫ |푤| 푑푧
/

  (using Schwartz inequality) (14) 

Since 푝 ≥ 0, therefore we have from inequality (14), we obtain 

∫ |퐷휃| 푑푧 < ∫ |휃| 푑푧
/

∫ |푤| 푑푧
/

.                                                                            (15) 

Since 휃(0) = 0 = 휃(1),  therefore using Rayleigh Ritz inequality (Schultz [8]), we obtain 

∫ |퐷휃| 푑푧 ≥ 휋 ∫ |휃| 푑푧.                                                                                                            (16) 
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Combining inequalities (15) and (16), we have 

 

 ∫ |휃| 푑푧 < ∫ |푤| 푑푧.                                                                                                               (17) 

From inequalities (14) and (17), we get 

푎 ∫ |휃| 푑푧 < ∫ |푤| 푑푧.                                                                                                 (18) 

Combining inequalities (12) and (18), we have 

푎 ∫ |휃| 푑푧 < ∫ |퐷푤| 푑푧 < ∫ (|퐷푤| + 	 푎 |푤| )푑푧.                                                   (19) 

Finally from inequalities (13) and (19), we obtain 

푄휎 ∫ (|퐷ℎ | + 	푎 |ℎ | )푑푧 + |푅|푎 휎 ∫ |휃| 푑푧 < + | | ∫ (|퐷푤| + 	 푎 |푤| )푑푧.   

                                                                                                                                            (20)   Thus, if  + | | ≤ 1, then 
inequality (20) yields 

∫ (|퐷푤| +	 푎 |푤| )푑푧 > 푄휎 ∫ (|퐷ℎ | + 	푎 |ℎ | )푑푧 + |푅|푎 휎 ∫ |휃| 푑푧                  (21) 

which completes the proof the theorem. 

It is clear from inequality (21), that left hand side represents total kinetic energy associated with a disturbance while the right 
hand side represents the sum of its total magnetic and thermal energies and thus theorem 1 may be stated in equivalent form as: 
‘At the neutral or unstable state in the magnetohydrodynamic triply diffusive convection problem of the Stern type, the total 
kinetic energy associated with a disturbance is greater than the sum of its total magnetic and thermal energies in the parameter 
regime + | | ≤ 1, and this result is uniformly valid for any combination of a dynamically free or a rigid boundary that are 
either perfectly conducting or insulating’. 

Note: If we put 푅 = 0, we obtain the result of Banerjee et al [1]. 

III.CONCLUSION 

Linear stability of triply diffusive configuration has been analyzed in the presence of a uniform vertical magnetic field. An 
energy relationship has been established for this configuration which proves that the total kinetic energy associated with the 
disturbance exceeds the sum of its total magnetic and thermal energies in the parameter regime + | | ≤ 1. The result 
derived herein is uniformly valid for the quite general nature of the bounding surfaces. 
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