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Abstract: Let  be a bipartite graph with bipartition  A function  is called a Y-dominating function (Y-
DF) of  if  , for all  A Y-DF is minimal (MY-DF) if any function  with  and  for 
at least one  is not a Y-DF. The minimum value of  taken over all MY-DFs of G is called the fractional Y-
domination number of G and is denoted by . In this paper we initiate a study of these parameters.  We obtain sharp bounds 
for f (G) and determine f(G) for several families of bipartite graphs. We investigate the behaviour of convex combinations of 
Y -dominating functions. We prove that the decision problem corresponding to the upper fractional Y-domination number ΓYf(G) 
is NP-complete. 
Keywords: Bipartite Graphs, Y-Domination, Domination, Dominating Function, Fractional Domination, Fractional Y-
Domination number, upper fractional Y-domination number.  

I. INTRODUCTION 
For  By a graph , we mean a finite, simple undirected and bipartite graph with bipartition . The order and size of  are 
denoted by  and  respctively. For basic terminology in graphs we refer to Chartrand and Lesniak [1].  
Hedetniemi and Laskar[6,7] proposed a bipartite theory of graphs and suggested an equivalent formulation of several concepts in 
graphs as concepts for bipartite graphs. One such example is the concept of Y-domination in a bipartite graph G = (V, E) with 
bipartition V = X∪Y. In this chapter we initiate a study of the fractional version of Y -domination.  
Let G=(X,Y,E) be a bipartite graph, where V(G)=X Y.  A subset D of X is a Y-dominating set of G if every y Y is adjacent to at 
least one vertex in D. The minimum order  of a Y-dominating set of G is called the Y-domination umber of G. The maximum 
cardinality of a minimal Y-dominating set of G is called the upper Y-dominating number of G denoted by   
If y ∈Y, then the open neighborhood of y is given by N(y)={x∈X:xy∈E(G)}. Thus D ⊆X is a Y –dominating set of G if 

 for all y∈Y. Two well known bipartite graphs associated with any given graph G=(V,E) are the subdivision 
graph and the neighborhood graph. The subdivision graph S(G) is the graph obtained from G by subdividing each edge of 
G exactly once. If we label the vertex subdividing an edge by e itself, then (V(G),E(G)) is a bipartition of S(G). The 
neighborhood graph N(G) has with vertex set V(G) N where N={N(v):v V(G)} and u is joined to N(v) if u N(v).  
In this paper we initiate a study of the fractional version of Y-domination. For a detailed study of fractional graph theory and 
fractionalization of various graph parameters, we refer to Scheinerman and Ullman [8] 

II. Y-DOMINATING FUNCTIONS 
There is an extensive study of fractionalization of several domination related parameters and for details we refer to the books[5] and 
[8]. The values of fractional parameters are useful not only for their own applications but also in providing information about the 
related integer valued parameters. We now proceed to define the fractional version of Y-domination in bipartite graphs. 
1) Definition 2.1. Let G=(X,Y,E) be a bipartite graph. A function 1] is called a Y-dominating function (Y-DF) of G if 

f(N(y))≥1 for all y ∈Y, . AY-dominating function f is minimal (MY-DF) if any function g:X→[0,1] 
such that g≤f and  for at least one x∈X is not a Y-dominating function of G. 

The fractional Y-domination number f(G) and the upper fractional Y-domination number ΓYf(G) are defined by 
 =min{|f|:f is a MY-DF of G}and  

ΓYf(G)=max {|f|:f is a MY-DF of G},where |f| = f(X)= .  
2) Remark 2.2. The characteristic function of a -set and that of a ΓY-set of a bipartite graph G are MY-DFs of G. Hence it 

follows that 1≤ f(G)≤ (G)≤ΓY(G)≤ΓYf(G)≤|X|.  
3) Observation 2.3. The problem of finding the fractional Y-domination number  of a bipartite graph G= (X,Y,E) is 

equivalent to finding the optimal solution of the following linear programming problem  
Minimize z= Subject to    and .  
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4) Definition 2.4.Let G=(X,Y,E) be a bipartite graph. A function f:Y→[0,1]is called a Y-packing function (Y-PF) of G if 
f(N(x))≤1 for all x∈X, where N(x)={y∈Y:xy∈E(G)}. AY-packing function f is maximal (MY-PF) if any function g:Y→[0,1] 
such that g ≥ f and g(y) f(y) for at least one y ∈ Y is not a Y-packing function of G.  The fractional Y-packing number pYf(G) 
and the fractional Y-packing number PYf(G) are defined by  f(G) = min{|f | : f is a MY-PF of G } and f(G) = max{|f | : f 
is a MY-PF of G} where |f |=f(Y)= .  

5) Observation 2.5. The problem of finding the fractional Y-packing number PYf(G) of a bipartite graph G= (X,Y,E) is 
equivalent to finding the optimal solution of the linear programming problem. 

Minimize z= Subject to     and . 
6) Remark 2.6. The L.P.P given in Observation 2.3 and the L.P.P given in Observation 2.5 are duals of each other. Hence it follows 

from the strong duality theorem that PYf(G)= f(G). Thus if there exists a minimal Y-dominating function f and a maximal Y-
packing function g with |f |=|g|, then PYf(G)=|g|=|f | = f(G). This is very useful in determining the fractional Y -domination 
number f (G), of a bipartite graph G.  

7) Example 2.7.Consider the graph G given in Figure 3.1                 
                    u1                     u2                      u3                         u4                      u5 

 
 
 
 

 
 
 

                                   v1                    v2                      v3                        v4                                 v5 

Figure 2.1 

Let X={u1,u2,u3,u4,u5} and Y={v1,v2,v3,v4,v5}. Then S ={u1,u5} is a -set of G and hence (G)=2. We have N(v1)={u2,u4,u5} = 

N(v3), N(v2) = {u1,u3,u5} = N(v4) and N(v5) ={u1,u2,u3,u4}. Now the function f: X→ [0,1] defined by is 

a Y-dominating function of G with   and hence (G) .  
Also we have N(u1)={v2,v4,v5}=N(u3), N(u2)={v1,v3,v5}=N(u4) and N(u5)={v1,v2,v3,v4}.  

Now the function g:Y → [0,1] defined by  is a Y -packing function of G with  and hence  PYf(G) 

≤ . Hence it follows from Remark 2.6 that f(G) = . 

8) Theorem 2.8. For the path Pn, n≥2, with |X|≤|Y|, we have f(Pn) = (Pn)= . 

Proof.  Let Pn= (u1, u2,…,un), n ≥ 2. 
Case 1. n is odd. 
Let n=2r+1, r≥1. Then X={x1,x2,…,xr}where xi = u2i ,i=1,2,...,r and Y={y1,y2,...,yr+1} where yi=u2i−1, i= 1,2,...,(r+1) is the bipartition 

of G. Now D= is a –set of G with . Hence .   

Let . Define the function   by . Then h is a Y-packing 

function of G with =  and hence it follows from Remark 2.6 that f(G)=  

Case2. n is even. 
Let n = 2r, r ≥ 1. Then X = {x1, x2,…,xr} where xi=u2i−1, i=1, 2, …, r and Y ={y1, y2,…,yr} where yi=u2i, i=1, 2,…,r is a bipartition 

of G.  Now D= is a  - set of G with |D| =  and hence f(G) .  Also the 

. . . . 

. . . . . 
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function g :Y→ [0, 1] defined by    is a Y -packing function of G with =  and hence it follows 

from Remark 2.6 that f(G)=  

The following lemma gives an upper bound for f(G). 
9) Lemma 2.9.  Let G=(X,Y,E) be a bipartite graph and let k = min {|N(y)|: y ∈Y}. Then f(G) . 

Proof. The constant function f:X→[0,1] defined by f(x) =   for all  is a Y- dominating function of G with  and 

hence f(G) . 
10) Corollary 2.10. Let G be any connected graph of order n. Then for the subdivision graph S(G) with X = V(G) and Y = E(G) as 

bipartite sets, we have f(S(G)) . 

11) Theorem 2.11. Let G = (X,Y,E) be a bipartite graph. If deg(y)≥2 for all  then f(G) . Further, if there exists a bijection 

α:X→X such that for each x∈X, α(x) x and there exists a  with then f(G)  
Proof. The inequality follows from Lemma 2.9. Now suppose there exists a bijection α:X→X satisfying  the  conditions  of the 
theorem. Let h be any Y-dominating function of G. Then h(N(yx))=h(x)+h(α(x))≥1 for each x∈X. Adding these |X| inequalities we 
get  This implies 2|h|≥|X| and hence f(G) . Thus f(G) .  

12) Corollary 2.12. For each of the following graphs,  

a) The complete graph  
b) The Petersen graph  
c) The cycle  
Proof.  It follows from Corollary 2.10 that f(S(G)) . To prove the equality, we will exhibit a bijection α :X = V (G) →V (G) 
satisfying the conditions stated in Theorem 2.11.  

If  and V(G) ={u1, u2,…,un}, then  α :V (G) →V (G) defined by    is the required condition. If 

 and V(P) ={u1,u2,...,u5,v1,v2,...,v5}, N(ui)={vi,ui+2,ui+3} and N(vi)={ui,vi+1,vi−1}, addition in the suffix is  
taken modulo 5, then the function α :V(G)→V(G) defined by  and  is the 
required bijection.  

If  then the function  defined by  is the required bijection.  

13) Theorem 2.13 LetG=(V,E) be an r-regular graph of order n. Then for the neighborhood graph N(G), we have f(N(G))= , 

where X=V  and  is the bipartition of N(G). 
Proof. Clearly, |N (y)| = r for all y ∈Y and |N (x)| = r for all x ∈X. Now the constant function f : X→ [0, 1] defined by f (x) = for all 

x ∈X, is a Y -dominating function of N(G) with = .  Also the constant function  defined by for all 

 is a -packing function of  with  . Hence by Remark 2.6, f(N(G))=  

III. CONVEXITY OF Y-DOMINATING FUNCTIONS 
In the study of fractional domination Cockayne et al. [2] have obtained several results about the convexity of the set of all minimal 
dominating functions of a graph. In this we give, similar results regarding the convexity of minimal -dominating functions of a 
bipartite graph . The following theorem gives a necessary and sufficient condition for a Y-dominating function to be a 
minimal Y-dominating function. 
1) Theorem 3.1. Let  f be  an Y -DF  of a bipartite graph G = (X,Y,E). Then f is an MY-DF if and only if for every x∈X with 

f(x)>0 there exists y∈Y such that x∈N(y) and f(N(y))=1. 
Proof. Let f:X→[0,1] be an MY-DF of G. Let x∈X andf(x)=a>0. Suppose f(N(y))>1 for all y∈Y with x∈N(y). Let δ = 
min{f(N(y))−1:y∈Y,x∈N(y)}. Then δ>0.  
It can be easily verified that the function g:X → [0, 1] defined by  is a Y-dominating function of 

G with g < f, which is a contradiction. Hence there exists y ∈Y with f (N (y)) = 1. The converse is obvious. 
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2) Definition 3.2. Let G=(X,Y,E) be a bipartite graph. Let x ∈X, S⊆X and  D⊆Y. We say that x Y-dominates D, if there exists an 
element y∈D such that x ∈N(y) and write  Also we say that S, Y-dominate D, if   for all  x ∈S, and write . 

3) Definition3.3 Let f be an Y-dominating function of a bipartite graph G=(X,Y,E). The boundary set Bf and the positive set Pf of f 
are defined by Bf = {y ∈Y :f(N(y))=1} and Pf = {x ∈X :f(x) >0}. 

The following theorem is an immediate consequence of Theorem 3.1. 
4) Theorem 3.4 A Y-dominating function f of a bipartite graph G is a minimal Y -dominating function of G if and only if . 

We now proceed to investigate the behaviour of convex combinations of Y- dominating functions. The proof of the following 
lemma is obvious. 

5) Lemma 3.5. Let f and g be two Y-DFs of a bipartite graph G and let 0 < λ <1. Then a convex combination hλ= λf+ (1 − λ)g is 
again an Y-dominating function of G. 

However, a convex combination of two MY-DFs need not be an MY-DF of G.  
Consider the following example. 

6) Example 3.6. Consider the graph G given in Figure3.1. Now the function f :X → [0,1] defined by is 

an MY -DF of G with Pf = {u1,u5} and Bf = {v1,v3,v5}. Also the function g :X → [0, 1] defined by  

is an MY-DF of G with Pg = {u4,u5} and Bg= {v2, v4,v5}. Now let  

Then  Clearly Ph = {u1,u4,u5} and Bh ={v5}. Since u5 does not Y-
dominate Bh, it follows from Theorem 3.4 that h is not minimal. 

The following theorem gives a necessary and a sufficient condition for a convex combination of two MY-DFs of a bipartite graph 
G to be an MY-DF of G. 
7) Theorem 3.7. Let f and g be two MY-DFs of a bipartite graph G. Then hλ=λf+(1−λ)g, 0<λ<1, is an MY-DF of G if and only if 

Pf∪Pg  Bf∩Bg. 

Proof. Since =  and  = , the result follows from Theorem 3.4. 
8) Remark 3.8. It follows from Theorem 3.7 that if f and g are MY-DFs of a bipartite graph G, then either all convex 

combinations of  f and g are MY-DFs or none of them is an MY-DF. 

IV. COMPUTATIONAL COMPLEXITY ΓYF(G) 
In this section we  prove that  for  any  bipartite  graph  G, the decision problem corresponding to the upper fractional Y-domination 
number ΓYF(G) is NP-complete. 
The decision problem corresponding o ΓYf(G) is given below. 

UPPER FRACTIONAL Y-DOMINATION (UFY-D) 
INSTANCE: A bipartite graph G and a positive number r;  
QUESTION: Is ΓYf(G) ≥ r?. 

We need the following definition and succeeding known NP-complete problem. 
1) Definition 4.1. [15] Let G = (V, E) be a graph with no isolated vertices. A set S ⊆V is said to be a total dominating set of G if 

N (S) = V. A function f :V → [0, 1] is called a total dominating function (TDF ) of G if f (N (v)) ≥ 1 for all v ∈V. The upper 
fractional total domination number is defined asΓ0(G)=max{| f|: f is a minimal TDF of G}. 

Fricke et al. [15] have shown that the following decision problem is NP-complete even for bipartite graphs. 
 

UPPER FRACTIONAL TOTAL DOMINATION (UFTD) 
INSTANCE: A graph G without isolated vertices and a positive number r; 
QUESTION: Is Γ0

f  (G) ≥r?. 
2) Theorem 4.2. UFY-D is NP-complete. 
Proof. The proof is by reduction from UFTD. Let (G,r) be an instance of UFTD. Consider the bipartite graph N(G) with bipartition 
X = V(G) and Y={N(u):u ∈V(G)}. It can be easily verified that f:V(G)→[0,1] is a minimal total dominating function of G if and 
only if f is a minimal Y-dominating function of G. Hence Γ0

f  (G)=ΓYf(N(G)) and the result follows. 
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The following are some interesting problems for further investigation. 
a) Characterize bipartite graphs G for which f((G)) =  

b) Characterize bipartite graphs G for which f(G) = f(G)  
c) Characterize graphs G for which γYf(S(G)) = . 

V. CONCLUSION AND SCOPE 
In this paper a study of fractional Y-domination number of a bipartite graph is initiated. We have determined this parameter for the 
subdivision graph and neighborhood graph of a graph G. The study of this parameter for other bipartite graphs is interesting. 
Hedetniemi et al. [6,7] have defined the concepts hyper-independent set, hyper-dominating set, X-matching and hyper-coloring of a 
bipartite graph G = (X,Y,E). The study of the fractional version of these parameters remains open. The following are some 
interesting problems for further investigation. 

A. Characterize bipartite graphs G for whichγYf((G)) =  

B. Characterize bipartite graphs G for which γYf(G) =γYf(G)  
C. Characterize graphs G for which γYf(S(G)) = . 
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