

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 8 Issue: III Month of publication: March 2020

DOI:

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue III Mar 2020- Available at www.ijraset.com

Sustainable Development Goals in Quality Education

Mr. Faizan Shaikh¹, Dr. PP Revankar²

¹PG, Energy System Engineering, KLE Technological University, Hubli, Karnataka, India ²Assistant Professor, Energy System Engineering, KLE Technological University, Hubli, Karnataka, India

Abstract: It basically describes about the quality education the one has played role in sustainability development goals. Quality education provides foundation for equality in society. Quality education basically deals with giving equal education to everyone. In this we have solved the problem using excel sheet how the students face the problem in school. After finding out the solution we have drawn the graph to compare the graph with the exact solution.

Keywords: Quality Education, Excel Sheet, Energy generated, Energy Deficit

I. INTRODUCTION

Quality Education enables people to develop all of their attributes and skills to achieve their potentially as human beings and members of society. Elements of quality education include well trained teachers, availability of books, active participation of pupils through child centered learning and appropriate infrastructure. When we deal with quality education we mean a standard education must be given to all, the content or syllabus must be same for all and improve with passage of time.

The goals of quality education are

- A. Academic Excellence.
- B. Improved academic standards.
- C. Applied learning.
- D. Lifelong academic skills.

II. METHODOLOGY

A. Imagine a school in village where students face the problem. As a quality engineer, how will you overcome their problem with the help of computational tool?

une menp o	· compar	
Devices	Watts	Hour
Computer	40	3
Phone	2.24	8
Stabilizer	25	3
DC light	40	4
DC water pum	p 20	2
Fan	60	2
Xerox	40	6
Printer	50	4
Projector	80	3
TV	70	2
Speaker	80	3
Fridge	60	4

No of	Total	Monthly
Components	energy	sunshine hr
3	360	9.6744
2	35.84	10.2758
1	75	9.6129
6	960	9.86667

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue III Mar 2020- Available at www.ijraset.com

1	40	9.6774
2	240	3.6
1	240	3.2903
3	600	3.5484
1	240	6.1667
1	140	8.7096
1	240	9.5
3	720	9.6774

Energy	Power
Consumed	rating
120	41.333416
17.92	5.813010504
75	26.00672014
160	54.05403579
40	13.77780533
120	111.1111111
240	243.1389235
200	187.8781047
240	129.7290285
140	53.58072319
240	84.21052632
240	82.666832
Max 2	43.1389235
Average 86	5.10835309
Avg*1.5 12	29.1625296

Energy Generated

A	В	C
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625
243.1389235	86.10835	129.1625

Energy Deficit

A	В	C
123.1389	-33.8916	9.16253
225.2189	68.18835	111.2425
168.1389	11.10835	54.1625
83.13892	-73.8917	-30.8375
203.1389	46.10835	89.1625
123.1389	-33.8917	9.1625

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 8 Issue III Mar 2020- Available at www.ijraset.com

3.138924	-153.892	-110.838
43.13892	-113.892	-70.8375
3.138924	-153.892	-110.838
103.1389	-53.8917	-10.8375
3.138924	-153.892	-110.838
3.138924	-153.892	-110.838

The above has been solved with the help of certain formula:

Total energy= Watt*Hours*Number of components.

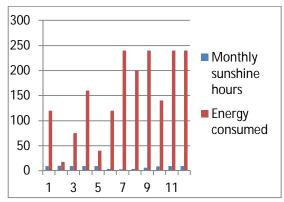
Energy consumed= Watt*Hours

Powerrating= Energy consumed

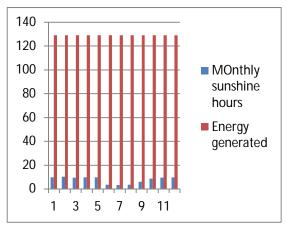
Overall efficiency*No of sunshine hours

Energy generated= Power rating*no of sunshine hours*overall efficiency

In this problem we have assumed overall efficiency as 0.30


Power rating max = A

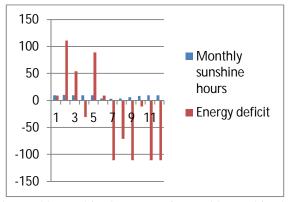
Power rating average = B


Power rating avg*1.5 = C

III. RESULTS AND DISCUSSIONS

The results obtained for above method is validated and the graph is plotted for x and y axis.

Graph 1: Energy consumed v/s Monthly Sunshine hours, x-axis monthly sunshine hours, y-axis energy consumed.


Graph 2: Energy generated v/s monthly sunshine hours, x-axis monthly sunshine hours, y-axis energy generated.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 8 Issue III Mar 2020- Available at www.ijraset.com

Graph 3: Energy deficit v/s monthly sunshine hours, x-axis monthly sunshine hours, y-axis energy deficit

IV. **CONCLUSION**

The results obtained by this tells us that

- The graph is plotted for energy consumed v/s monthly sunshine hours.
- В. The graph is plotted for energy generated v/s monthly sunshine hours.
- *C*. The graph is plotted for energy deficit v/s monthly sunshine hours.
- D. Number of sunshine hours is calculated for each month.
- Е. Energy consumed is calculated for watt*hours.

REFERENCES

- Goutam Kumar Kundu: Higher Education Quality: A Literature Review. ISSN 2395-1664, 2016. [1]
- Dr.Haseena V.A: Aspects of quality in education for the improvement of Educational scenario. ISSN 2222-288X, Vol.6, No.4, 2015. [2]
- Sanjay Mehra: Criteria of quality school education. ISSN: 2455-4030. Volime 3; Issue 2; March 2018.

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)