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Abstract: There are many models and algorithms are available in Machine Learning for generating prediction which can be 
applied to wide range of cases. Good predictions can help us prepare better for the future. This paper is a practice to implement 
those application on the CVID-19 data set to predict confirmed cases of COVID-19 in India. The data set is available open on 
Government of India dashboard but we have used dataset from Kaggle and tried to see which Machine Learning Models will 
give good predictions. In this, we had analyzed Simple Artificial Neural Network, Deep Neural Network and Recurrent Neural 
Network. We had run the same experiment with different setups where we enhance number of hidden layers to see how model 
performance will change. At the end we had given a comparison of all the models for their performance.   
Keywords: Deep learning, hidden layers, COVID-19, Recurrent Neural Network, Deep Neural Network, Kaggle. 

I. INTRODUCTION 
This Paper is about comparing Machine Learning algorithms to predict confirmed cases of COVID-19 in India. So First of all it is 
important to understand about COVID-19 and the Machine Learning Algorithms that we are going to use. 

 
A. COVID-19 
In India, the outbreak of novel corona virus has caused approximately 5500+ people infected and 100+ deaths. At the time of 
working on the prediction, confirmed cases were just 749. To control the spread of disease, screening large numbers of suspected 
cases for appropriate quarantine and treatment measures is a priority. 
 
B. Machine Learning Models 
Following Machine Learning Models can be used data for time-series analysis. As the data, we are working on is temporal, so these 
models have been selected for analysis. [1] gives us the motivation for such analysis. 
1) Artificial Neural Network: Artificial Neural Network are computing system inspired by the Human Brain. ANNs functions 

computing and are similar to biological neural network in basic characteristics. There are many inputs to neurons, each input is 
given a relative weight which affects the processing of input. Several types of ANNs have been developed in past years, but can 
be broadly classified on the way of learning process i.e. 'Supervised learning' and 'Unsupervised learning'. The ANNs have been 
applied to many fields including automotive, banking, financial, medical, speech and many more. The work on ANNs have 
only increased since 1990's and is progressing rapidly.[2] 

 
 

 
Fig: 1 Architecture Of Deep Neural Network 
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2) Deep learning for Prediction: There are many machine learning algorithms which have been working well from long time. 
Deep learning algorithms are good and have been around for many decades but highlighted in recent years only. This is because 
of scaling in data all thanks to digitalization and development in hardware like GPU devoted to computational power. Large 
scale neural net have astonishing performance with increase in data scaling. Even small neural net performs well with huge data 
comparing to traditional algorithms. [3]represents the approach using Deep Neural Network. 

 
Fig: 2 Performance Of Data Scaling 

 
3) Deep Neural Network: A Deep Neural Network [4] (DNN) is an Artificial Neural Network (ANN) with multiple layers between 

the input and output layers. The DNN finds the correct mathematical manipulation to turn the input into the output, whether it 
be a linear relationship or a non-linear relationship. 

 
 Fig. 3 ARCHITECTURE OF DEEP NEURAL NETWORK 

 
 
4) Recurrent Neural Network: A Recurrent Neural Network[4] (RNN) is a class of Artificial Neural Network where connections 

between nodes form a directed graph along a temporal sequence. This allows it to exhibit temporal dynamic behavior. There are 
more advanced Recurrent Neural Network which are known as LSTM and GRU. This paper does not include LSTM and GRU 
but can be applied on the same.  

 
Fig. 4 Architecture of Recurrent Neural Network 

II. EXPERIMENTAL SETUP 
A. Dataset 
Kaggle dataset is one of the best place to find reliable and quality datasets. In the predictions used for this paper we used dataset 
from covid-19 (week 3) competition on kaggle. The dataset consist of columns namely Id, Province_State, Country_Region, Date, 
ConfirmedCases, and Fatalities. The dataset contain data from entire world with 22950 entries. But the paper is only focused on the 
India so we pre-processed the data to be used for training the models.   We don’t need the entire set so we will be keeping data 
relavent to India and remove all the unnecessary columns too. 
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B. Pre-Processing 
Pre-processing of the data to feed the neural networks has been done to get maximum performance from deep learning models. 
From going through data, it has been observed that the data have dates as a column, which needs to be replaced by serial number 
therefore a new column named “days” has been created. As we were working on Indian data only so we had removed all the rows 
which does not belongs to the "Country_Region" as India. We didn’t needed the Province_State column and Id column therefore it 
is also useless for our experimental setup so we had dropped them from the dataset. Having very less data makes our task much 
more difficult as the data is highly influenced from past data. This makes it difficult to predict due to involvement of seasoning, 
trends and noise. Finally we had only ‘days’ as “time” and ‘ConfirmedCases’ as “series” from the original dataset. The reduced 
dataset had only 75 rows. We used windowed dataset with window_size equal to 5 for implementation of Deep Neural Networks. 

 
III. IMPLEMENTATION 

A.  Single Neuron 
We have used single neuron for our first deep learning model. We used Sequential single layer model which is very important since 
it will be used as baseline. The single layer model don’t need any activation function and is having input_size of 5.   
1) Code Snippet: layer0 = keras.layers.Dense(1,input_shape=[window_size]) 
model = keras.models.Sequential([layer0]) 
model.compile(loss = 'MeanAbsoluteError', optimizer = 'Adam',metrics=['accuracy']) 
The model is compile with loss function “MeanAbsoluteError” and “Adam” as optimizer. MeanAbsoluteError helps us know about 
the error during predictions. We used accuracy metrics to keep account of accuracy. We fit the model with reduced dataset and 
epochs equal to 1000, so we get a better understanding about models behavior. 
2) Code Snippet: history = model.fit(dataset,epochs=1000) Now the model is ready and trained with the dataset. We can predict 

the ConfirmedCases with this model. 
3) Code Snippet: model.predict(series[time:time + window_size][np.newaxis]) 

 
B. Deep Neural Network 
Deep Neural Network have input layer, hidden layers and output layer. For the prediction we had used 3 Deep Neural Networks 
(termed as Model 1, 2 and 3 respectively) which will help us know how no. of layers and no. of neurons affect the prediction and 
loss of the models. 
1) Model 1: The first Deep Neural Network model consist of 3 layers having (10,10,1) neurons respectively. We used “Relu” as 

activation function and input_size same in all the models. Having same input_size, help us compare the models more 
effectively. 

a) Code Snippet 
#Input layer  
keras.layers.Dense(10, activation = 'relu',input_shape=[window_size]) 
#hidden layer  
keras.layers.Dense(10,activation = 'relu') 
#output layer 
keras.layers.Dense(1) 
We used the same loss function in all the models. We compile the model with loss function as “MeanAbsoluteError” and “Adam” 
optimizer. 

 
b) Code Snippet 
model.compile(loss = 'MeanAbsoluteError', optimizer = 'Adam',metrics=['accuracy']) 
We then compile the model with dataset and epochs equals to 1000. 
 
c) Code Snippet 
history = model.fit(dataset, epochs=1000) 
The model is compiled and trained with our dataset. The model has been used for prediction of ConfirmedCases. 
d) Code Snippet 
model.predict(series[time:time + window_size][np.newaxis]) 
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2) Model 2: The second model also have 3 layers similar to the model 1. But the no. of neurons in the input layer have been 
increased from 10 to 30. This will help us understand the dependency of the model on the neurons. The no. of neurons in layers 
are (30,10,1) respectively. We used the same activation function “Relu” in the input and hidden layer. 

a) Code Snippet 
#Input layer  
keras.layers.Dense(30, activation = 'relu',input_shape=[window_size]) 

 
#hidden layer  
keras.layers.Dense(10,activation = 'relu') 

 
#output layer 
keras.layers.Dense(1) 
We used the same loss function and optimizer. 

 
b) Code Snippet 
model.compile(loss = 'MeanAbsoluteError', optimizer = 'Adam',metrics=['accuracy']) 
We had compiled the model with dataset and epochs equals to 1000and the predictions has been drawn. 
 
c) Code Snippet 
history = model.fit(dataset, epochs=1000) 
model.predict(series[time:time + window_size][np.newaxis]) 
 
3) Model 3: The third model have two hidden layers and will help us understand effects of increasing the layers in the deep neural 

networks. The layers have neurons (30,20,10,1) respectively. We have used the same activation function “Relu” and with the 
same loss function and optimizer model has been compiled and predictions has been drawn. 

a) Code Snippet 
#Input layer  
keras.layers.Dense(30, activation = 'relu',input_shape=[window_size]) 

 
#hidden layer  
keras.layers.Dense(20,activation = 'relu') 
keras.layers.Dense(10,activation = 'relu') 

 
#output layer 
keras.layers.Dense(1) 
model.compile(loss = 'MeanAbsoluteError', optimizer = 'Adam',metrics=['accuracy']) 
history = model.fit(dataset, epochs=1000) 
model. predict(series[time:time + window_size][np.newaxis]) 
 
C. Recurrent Neural Network 
Recurrent neutral network are able to store previous output and make decision based on previous output. We used two different 
models with different no. RNN layers which help us understand behavior of model more effectively. We had also used Lambda 
layers which allows us to include processing data on the fly to the neural network. 
1) Model 1: The first model have 1 input layer, 4 hidden layers and 1 output layer. The layers have 2 lambda layers one each at 

input and output and 3 RNN layers in hidden layers. The output lambda layer is used for scaling, all the outputs are multiplied 
by 100 so it does not change relative to other outputs. 

a) Code Snippet 
#Input layer 
tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1), 
input_shape=[None]) 
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#Hidden layers 
tf.keras.layers.SimpleRNN(20, return_sequences=True,activation = 'relu'), 
tf.keras.layers.SimpleRNN(10,activation = 'relu',return_sequences = True), 
tf.keras.layers.SimpleRNN(10,activation = 'relu'),   
tf.keras.layers.Dense(1), 

 
#output layer 
tf.keras.layers.Lambda(lambda x: x * 100.0) 
The model is compiled with “MeanAbsoluteError” for loss function and “Adam” for the optimizer with accuracy metrices. 

 
b) Code Snippet 
model.compile(loss = 'mae', optimizer = 'Adam',metrics=['accuracy']) 
We had trained the model with dataset and epochs equals to 1000. 

 
c) Code Snippet 
history = model.fit(dataset, epochs=1000) 
The model is compiled and trained with the dataset and predicted ConfirmedCases 

 
d) Code Snippet 

model.predict(series[time:time + window_size][np.newaxis]) 
 

2) Model 2: The second model have 5 RNN layers whereas the previous model had only 3 RNN layers. The neurons in 6 layers 
are (30, 30, 20, 10, 10, 1) respectively in hidden layers. We still used lambda layers for input and output. We need to use 
return_sequence parameter in all the layers which feed into other RNN layers. 

a) Code Snippet 
#Input layer 
tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1), 

                      input_shape=[None]) 
#hidden layers 

  tf.keras.layers.SimpleRNN(30, return_sequences=True,activation = 'relu'), 
  tf.keras.layers.SimpleRNN(30, return_sequences=True,activation = 'relu'), 
  tf.keras.layers.SimpleRNN(20, return_sequences=True,activation = 'relu'), 
  tf.keras.layers.SimpleRNN(10,activation = 'relu',return_sequences = True), 
  tf.keras.layers.SimpleRNN(10,activation = 'relu'),   
  tf.keras.layers.Dense(1), 

#output layer 
tf.keras.layers.Lambda(lambda x: x * 100.0) 
The model is compiled and then for 1000 epochs predictions has been drawn. 

 
b) Code Snippet 
model.compile(loss = 'mae', optimizer = 'Adam',metrics=['accuracy']) 
history = model.fit(dataset, epochs=1000) 
model.predict(series[time:time + window_size][np.newaxis]) 

IV. EXPERIMENTAL RESULTS AND COMPARISION 
After Execution of the models, predictions has been drawn. The results will be in the form of graphs. First graph depicts epocs vs. 
loss and the second graph depicts relation between day and no. of confirmed case. The Blue line in second graphs depicts Actual 
numbers of confirmed cases while the orange line in the same graph depicts predicted number of confirmed cases. The comparison 
of these results has been depicted in the following table: 
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TABLE I 
Results And Comparison Table Of All Models 

Model 
Name 

Hyper 
parameters 

Loss (after 200 epochs) Predicts vs actual data 

SNN loss = 'MeanAbs
oluteError 
optimizer = 'Ada
m' 
eopchs=1000 
 

  
DNN 
Model 1 

loss = 'MeanAbs
oluteError 
optimizer = 'Ada
m' 
eopchs=1000 
 

  
DNN 
Model 2  

loss = 'MeanAbs
oluteError 
optimizer = 'Ada
m' 
eopchs=1000 
 

  
DNN 
Model 3 

loss = 'MeanAbs
oluteError 
optimizer = 'Ada
m' 
eopchs=1000 
 
 

  
RNN 
Model 1 

loss = 'MeanAbs
oluteError 
optimizer = 'Ada
m' 
eopchs=1000 
 

  
RNN 
Model 2 

loss = 'MeanAbs
oluteError 
optimizer = 'Ada
m' 
eopchs=1000 
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V. CONCLUSION 
After conducting these experiments, we get minimum loss in the Deep Neural Network Model 2. It was expected that the Recurrent 
Neural Network Model 2 to have maximum overlapping hence the best prediction. But the Single Neural Network had the most 
overlapping in the validation and most close to real data. This might be a result because of less data in the dataset because of the 
latest development in the number of confirmed cased in India hence It is concluded that Single Neural Network happened to work 
best in this setup. 
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