

2 III March 2014

www.ijraset.com Vol. 2 Issue III, March 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 166

A Round Robin Algorithm using
Mode Dispersion for Effective Measure

Rishi Verma , Sunny Mittal, Dr. Vikram Singh

*, **Research Scholar, Department of Computer Science & Application
***Professor in Department of CSA

Chaudhary Devi Lal University, Sirsa- India

Abstract— Round Robin scheduling algorithm is a preemptive scheduling algorithm. It is designed especially for time
sharing Operating System. In RR scheduling algorithm the CPU switches between the processes when the static Time
Quantum expires. RR scheduling algorithm is considered as the most widely used scheduling algorithm in research because
the TQ is equally shared among the processes. In this paper a newly proposed variant of RR algorithm called Mode Round
Robin (MRR) scheduling algorithm is presented. The idea of this MRR is to make the TQ repeatedly adjusted using Mode
dispersion measure in accordance with remaining CPU burst time. Our experimental analysis shows that MRR performs
much better than RR algorithm in terms of average turnaround time, average waiting time and number of context switches.

Keywords- Operating System, Round Robin, Mode Round Robin, Turnaround time, Waiting time, Context switch.

I. INTRODUCTION

An Operating System is a collection of programs and utilities.
It is an interface between end user and system hardware, so
that the user can handle the system in a convenient manner.
Proportional share resource management provides a flexible
and useful abstraction for multiplexing time shared resources.
Modern Operating Systems become more complex, they have
evolved from a single task to a multitasking environment in
which processes run in a concurrent manne. CPU scheduling
algorithms decides which of the processes in the Ready Queue
is to be allocated to the CPU. There are many different CPU
scheduling algorithms, out of those algorithms, Round Robin
is the oldest, simplest and most widely used proportional share
scheduling algorithm. It is similar to FCFS scheduling, but
preemption is added to switch between processes. A small unit
of time is used in RR which is called as Time Quantum or
Time Slice. The CPU scheduler goes around the RQ,
allocating the CPU to each process for a time interval of up to
1 TQ. If new process is arrived then it is added to the tail of
the circular queue. The CPU scheduler picks the first process
from the queue, sets a timer to interrupt after one TQ and
dispatches the process. After TQ is expired, the CPU preempts
the process and the process is added to the tail of the circular
queue. If process finishes before the end of the TQ, the
process itself preempts the CPU willingly. In this paper, we
present a solution to the TQ problem by adjusting TQ with

respect to the existed set of processes in RQ.
II. PRELIMINARIES

CPU scheduling is the basis of multi programmed operating
system. The idea of multiprogramming is, if a process is
waiting for an I/O request, then the CPU switches from that
process to another process. So, the CPU is always busy in
multiprogramming. But in a simple computer system, the CPU
is idle until the I/O request is finished. All computer resources
are scheduled before in use. So, CPU scheduling algorithm
determines how the CPU will be allocated to the process. CPU
scheduling algorithms are two types, one is non-preemptive
and another is preemptive scheduling algorithms. In non-
preemptive scheduling, once the CPU is allocated to a process
, the process keeps the CPU until it releases the CPU either by
terminating or by switching to the waiting state. But, in
preemptive scheduling, the CPU can release the processes
even in the middle of the execution. A process is a program at
the time of execution. A process is more than the program
code; it includes the program counter, the process stack, and
the contents of process register etc. A process is a dynamic
object. The processes are assigned to a processor are put in a
queue called Ready Queue. CPU Utilization is the percentage
of time that the processor is busy. It generally ranges from 0 to
100 percent. Throughput means how many processes are
finished by the CPU with in a time period. The time interval
between the submission of the process and time of the

www.ijraset.com Vol. 2 Issue III, March 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 167

completion is the Turnaround time. Waiting time is the
amount of time a process is waiting in the RQ, waiting in I/O
and waiting in CPU. The number of times CPU switches from
one process to another is called as the number of context
switches. There are well known CPU scheduling algorithms
that has been developed such as First Come First Serve
(FCFS) algorithm, Shortest Job First (SJF) algorithm, Shortest
Remaining Time Next (SRTN) algorithm, Round Robin (RR)
algorithm and Priority Scheduling algorithm. RR and SRTN
are preemptive in nature. RR is most suitable for time sharing
systems. But its average output parameters (turn-around time,
waiting time, etc.) are not feasible enough to be employed in
real-time systems.

III. RELATED WORK

In last few years different approaches are used to increase the
performance of RR scheduling in different ways. Basically,
the CPU scheduler is concerned mainly with CPU utilization,
throughput, turnaround time, waiting time, response time and
fairness. Self-Adjustment Time Quantum in Round Robin
(SARR) algorithm is based on a new approach called dynamic
TQ, in which TQ is repeatedly adjusted according to the
current burst time of the running processes. Dynamic
Quantum with Re-adjusted Round Robin (DQRRR) algorithm
is based on a TQ, in which TQ is calculated as median of the
existed set of processes. A. Bhunia has proposed an approach
to increase performance of Multi Level Feedback Scheduling
(MLFQ) in which response time of starved processes and over
all turnaround time of the whole scheduling process decreases
around eight to ten percent.

IV. PROPOSED APPROACH

In this approach, time quantum is taken as the range of the
CPU burst time of all the processes. The range of the
processes is the difference between the largest (maximum)
and smallest (minimum) values.

A. Uniqueness of Our Approach
Let’s assume that the data are sorted in increasing numerical
order. It gives better turnaround time and waiting time.
Generally, the performance of RR algorithm depends upon the
size of static Time Quantum (TQ). If the TQ is extremely
large, the algorithm approximate to First-Come First-Served
(FCFS). If the TQ is extremely small, the algorithm causes too
many context switches. So, our approach solves this problem
by taking a dynamic TQ where the TQ is the difference
between maximum and minimum CPU burst time as shown in
equation.

TQ = MAXBT – MINBT
Where MAXBT = MAXimum Burst Time

MINBT = MINimum Burst Time
(1)

B. Proposed Algorithm
In our algorithm, processes are already present in the Ready
Queue (RQ). By default, Arrival Time (AT) is assigned to
zero. The number of processes ‘n’ and CPU Burst Time (BT)
are accepted as input and Average Turnaround Time (ATT),
Average Waiting Time (AWT) and number of Context Switch
(CS) are produced as output. Let TQ and TQnew be the time
quantum and new time quantum respectively. The pseudocode
for the algorithm is presented in Figure 1 and the flowchart of
the algorithm is presented in Figure 2

1. All the processes present in the ready queue are sorted in
ascending order.

//n = number of processes, i = loop variable

2. while (RQ != NULL)
//RQ = Ready Queue
TQ = MAXBT – MINBT
//TQ = Time Quantum
//MAXBT = MAXimum Burst Time
//MINBT = MINimum Burst Time
(Remaining burst time of the processes)
// If one process is there then TQ is equal to

BT of itself

3. if (TQ < 25)
set TQnew = 25

else
set TQnew = TQ

end if

4. //Assign TQ to (1 to n) process
for i = 1 to n
{

Pi → TQnew
}
end for
// Assign TQnew to all the available

processes.

5. Calculate the remaining burst time of the
processes.

6. if (new process is arrived and BT != 0)
go to step 1

else if (new process is not arrived and BT

www.ijraset.com Vol. 2 Issue III, March 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 168

!= 0)
go to step 2

else if (new process is arrived and BT == 0)
go to step 1

else
go to step 7

end if

end while

7. Calculate ATT, AWT and CS.
//ATT = Average Turnaround Time
//AWT = Average Waiting Time
//CS = number of Context Switches

8. End

Algorithm 1. Pseudo code for Mode Round Robin (MRR) algorithm.

www.ijraset.com Vol. 2 Issue III, March 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 169

Figure 2. Flowchart of Mode Round Robin (MRR) algorithm

C. Illustration
Suppose four processes arriving at time = 0, and CPU burst
time sequence P1 = 90, P2 = 96, P3 = 9, P4 = 37. The
processes are sorted in ascending order of their CPU burst
time which results in sequence P3 = 9, P4 = 37, P1 = 90, P2 =
96. Then TQ is calculated. TQ is the difference between
maximum CPU burst time i.e. P2 = 96 and minimum CPU
burst time i.e. P3 = 9. So, TQ is equal to 96 – 9 = 87. After
first iteration the remaining CPU burst time sequence is P3 =
0, P4 = 0, P1 = 3, P2 = 9. In this case, the processes P3 and P4
are deleted from the Ready Queue (RQ). Again, CPU burst
time is sorted in ascending order and new TQ is calculated.
Here, new TQ is equal to 9 – 3 = 6 which is less than 25. So,
new TQ is set to 25. After second iteration the remaining CPU
burst time sequence is P1 = 0, P2 = 0. P1 and P2 are deleted
from the RQ. Since, no process in the RQ, it completes its
execution and ATT, AWT and CS are calculated. In this case,
ATT = 127.5, AWT = 69.5, CS = 5.

V. EXPERIMENTAL ANALYSIS

A. Assumptions Taken

The system environment where all the experiments are
performed is a single processor environment and all the
processes are independent. Assume that all processes are CPU
bounded. Time Quantum (TQ) is not more than maximum
burst time. The processes are sorted in ascending order of their
CPU burst time. We assume a constant TQ equal to 20 in all
cases. The context switching time is equal to zero i.e. there is
no context switch overhead incurred in transferring from one
process to another. Let us assume that M represents the Min-
Max TQ. If the Min-Max TQ is less than 25 then its value
must be modified to 25 to avoid the overhead of the context
switch as shown in equation 2.

TQ = {
M , if M >= 25

25 , if M < 25 (2)

Experimental Frame Work

The experiment consists of several inputs and outputs

attributes. The input attributes consist of TQ, number of
processes, CPU burst time and arrival time. The output
attributes consist of average turnaround time, average waiting
time and number of context switches.

C. Data Set

To evaluate the proposed method, we will take a group of four
processes in five different cases with random burst time and
random arrival time.

D. Performance Metrics

The proposed algorithm is designed to meet all scheduling
criteria such as maximum CPU utilization, maximum
throughput, minimum turnaround time, minimum waiting time
and minimum context switches. We are considering three
performance metrics in each case of our experiment.

 Turnaround Time (TAT)
TAT = Finish Time – Arrival Time

(3)
Average turnaround time should be less.

 Waiting Time (WT)
WT = Start Time – Arrival Time

(4)
Average waiting time should be less.

 Number of Context Switches (CS)
The number of context switches should be

less.

E. Experiments Performed

In each case we will compare the result of the proposed
method with Round Robin scheduling algorithm. For RR
algorithm, we have taken 20 as the fixed or static TQ.

Case 1: Assume four processes arrived at time = 0, with burst
time (P1 = 12, P2 = 45, P3 = 78, P4 = 90) as shown in TABLE
1. TABLE 2 shows the comparison between RR and MRR.
Figure 3 and Figure 4 shows the gantt chart of RR and MRR.

TABLE 1. Processes with Burst Time

Process Arival Time Burst Time

P1 0 12

www.ijraset.com Vol. 2 Issue III, March 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 170

P2 0 45

P3 0 78

P4 0 90

TABLE 2. Comparison of RR and MRR

Algorithm Time Quantum Turnaround Time Waiting Time Context Switch

RR 20 142.25 86 12

MRR 78,335 107.25 51 4

TQ = 20

P1 P2 P3 P4 P2 P3 P4 P2 P3 P4 P3 P4 P4

0 12 32 52 72 92 112 132 137 157 177 195 215 225

Figure 3. Gantt of RR

TQ = 78 TQ = 25

P1 P2 P3 P4 P4

0 12 57 135 213 225

Figure 4. Gantt of MRR

Case 2: Assume four processes arrived at time = 0, with burst time (P1 = 61, P2 = 62, P3 = 63, P4 = 64) as shown in TABLE 3.
TABLE 4 shows the comparison between RR and MRR. Figure 5 and Figure 6 shows the gantt chart of RR and MRR.

TABLE 3. Processes with Burst Time

Process Arival Time Burst Time

P1 0 61

P2 0 62

P3 0 63

www.ijraset.com Vol. 2 Issue III, March 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 171

P4 0 64

TABLE 4. Comparison of RR and MRR

Algorithm Time Quantum Turnaround Time Waiting Time Context Switch

RR 20 245 182.5 15

MRR 25,25,25 230 167.5 11

TQ = 20

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

0 20 40 60 80 100 120 140 160 180 200 220 240 241 243 246 250

Figure 5. Gantt chart of RR

TQ = 25 TQ = 25 TQ = 25

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

0 25 50 75 100 125 150 175 200 211 223 236 250

Figure 6. Gantt chart of MRR

Case 3: Assume four processes arrived at time = 0, with burst time (P1 = 20, P2 = 40, P3 = 80, P4 = 160) as shown in TABLE
5. TABLE 6 shows the comparison between RR and MRR. Figure 7 and Figure 8 shows the gantt chart of RR and MRR.

TABLE 5. Processes with Burst Time

Process Arival Time Burst Time

P1 0 20

P2 0 40

P3 0 80

P4 0 160

TABLE 6. Comparison of RR and MRR

Algorithm Time Quantum Turnaround Time Waiting Time Context Switch

RR 20 155 80 13

MRR 140,25 130 55 4

www.ijraset.com Vol. 2 Issue III, March 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 172

TQ = 20

P1 P2 P3 P4 P2 P3 P4 P3 P4 P3 P4 P4 P4 P4 P4

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Figure 7. Gantt chart of RR

TQ = 140 TQ = 25

P1 P2 P3 P4 P4

0 20 60 140 280 300

Figure 8. Gantt chart of MRR

Case 4: Assume four processes arrived at time (P1 = 0, P2 = 2, P3 = 15, P4 = 23), with burst time (P1 = 5, P2 = 25, P3 = 55, P4
= 75) as shown in TABLE 7. TABLE 8 shows the comparison between RR and MRR. Figure 9 and Figure 10 shows the gantt
chart of RR and MRR.

TABLE 7. Processes with Burst Time and Arrival Time

Process Arival Time Burst Time

P1 0 5

P2 2 25

P3 15 55

P4 23 75

TABLE 8. Comparison of RR and MRR

Algorithm Time Quantum Turnaround Time Waiting Time Context Switch

RR 20 80 40 9

MRR 25,25,25,25,25 72.5 32.5 7

TQ = 20

P1 P2 P3 P4 P2 P3 P4 P3 P4 P4

0 5 25 45 65 70 90 110 125 145 160

Figure 9. Gantt chart of RR

TQ = 25 TQ = 25 TQ = 25 TQ = 25 TQ = 25

P1 P2 P3 P4 P3 P4 P3 P4

www.ijraset.com Vol. 2 Issue III, March 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 173

0 5 30 55 80 105 130 135 160

Figure 10. Gantt chart of MRR

Case 5: Assume four processes arrived at time (P1=0, P2=17, P3= 35, P4=50), with burst time (P1 = 22, P2 = 47, P3 = 66, P4 =
74) as shown in TABLE 9. TABLE 10 shows the comparison between RR an MRR. Figure11 and Figure 12 show the gantt
chart of RR and MRR.

TABLE 9. Processes with Burst Time and Arrival Time

Process Arival Time Burst Time

P1 0 22

P2 17 47

P3 35 66

P4 50 74

TABLE 10. Comparison of RR and MRR

Algorithm Time Quantum Turnaround Time Waiting Time Context Switch

RR 20 133.25 81 12

MRR 25,47,25,25,25 95.75 433.5 7

TQ = 20

P1 P2 P3 P4 P1 P2 P3 P4 P2 P3 P4 P3 P4

0 20 40 60 80 82 102 122 142 149 169 189 195 209

Figure 11. Gantt chart of RR

TQ = 25 TQ = 47 TQ = 25 TQ = 25 TQ = 25

P1 P2 P3 P4 P3 P4 P3 P4

0 22 69 94 119 114 169 185 209

Figure 12. Gantt chart of MRR

REFERENCES

[1] R. J. Matarneh, “Seif-Adjustment Time Quantum in Round
Robin Algorithm Depending on Burst Time of the Now
Running Proceses”, American Journal of Applied Sciences 6
(10), pp.1831-1837, 2009.

[2] J. Nieh, C. Vaill and H. Zhong, “Virtual-Time Round-
Robin: An O(1) Proportional Share Scheduler”, Proceedings
of the USENIX Annual Technical Conference, Boston,
Massachusetts, USA, pp. 25-30, June 2001.

www.ijraset.com Vol. 2 Issue III, March 2014
ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 174

[3] S. M. Mostafa, S. Z. Rida and S. H. Hamad, “Finding
Time Quantum of Round Robin CPU Scheduling Algorithm in
General Computing Systems using Integer Programming”,
IJRRAS 5(1), pp.64-71, October 2010.

[4] A. Silberschatz, P. B. Galvin and G. Gagne, “Operating
System Principles”, 7th Edn., John Wiley and Sons, 2008.

[5] H. S. Behera, R. Mohanty, and D. Nayak, “A New
Proposed Dynamic Quantum with Re-Adjusted Round Robin
Scheduling Algorithm and Its Performance Analysis,” vol. 5,
no. 5, pp. 10-15, August 2010.

[6] A. Bhunia, “Enhancing the Performance of Feedback
Scheduling”, IJCA, vol. 18, no. 4, pp. 11-16, March 2011.

