



IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 8 Issue: VI Month of publication: June 2020

DOI: http://doi.org/10.22214/ijraset.2020.6320

### www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com



## Experimental Study on Earthquake Resistant Design of Structure

Er. Nitin Kumar<sup>1</sup>, Er. Abhishek Arya<sup>2</sup>

<sup>1</sup>M.Tech Student, Department of Civil Engineering, MRIEM (ROHTAK) <sup>2</sup>Assistant Professor at department of Civil Engineering, MRIEM (ROHTAK)

Abstract: The research based work of earthquake & propagations of seismic waves, wave which generates by help of energy cause from sudden breakage in rock with-in Earth or either explosions which move through & around Earth, named as Seismology. Earthquake that occurs by movement of 2 tectonic plates, sudden toward & enen against. The rock normally breaks under-ground along because of breakage of rock earth-shake, results as earthquakes. Design of these types of building that might with-stand earthquakes are named as earthquake-resistant design of the structures. Such buildings which construct, called as earthquake-resistant structures. Current work illustrates the merits along futures trend of earthquake-resistant designs of such structure.

#### I. INTRODUCTION

The vibrations causes because of suddenly movements in tectonic-plate in earth-crust that will follow releases of tremendous volume of heats, named as earthquakes. In Fig.(a) mentioned, the 2 tectonic-plate that were in earth-crust which move toward along outward due to which a epi-center was noticed along earth-surface. At that epi-center the intensities of vibrations are noticed highest, results in releasing of seismic-waves that move in way that make concentric-circle & intensities of vibration normally reduce..



Fig.(a). Moving of Tectonic Plates

Such designs of earthquakes resistant-structures are initiative along where numerous latest development were found in probability in coming decades. These are few of development mentioned that may made in upcoming time.

- A. Complete probabilistic-analysis.
- B. Performances base designs code,
- C. Multiples annuals probability of responses of spectral-acceleration along peaks ground-acceleration.

The upgraded structural-systems along with material that utilized help to reduce seismic-risks. The structural designs that withstand effects of earthquake were refers to earthquake-resistant structures. The important aim of earthquake-resistant constructions of such building was generally to made structure strong which may with-stand earthquakes and others seismic-activities. International Journal for Research in Applied Science & Engineering Technology (IJRASET)



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue VI June 2020- Available at www.ijraset.com

#### II. EARTHQUAKE PRONE ZONES IN INDIA

Normally, such area have traps rocks along basaltic-rocks was caused of earthquake. Normally, in nation like India have divide into 4 zone.



Fig.(b) Earthquake Risk Zone Map

#### A. Zone 5 (Very-High Damages)

Such zones cover area with maximums risk that suffer earthquake of intensities of MSK IX and even greater. Zone 5 is associates with highest levels of seismicity. This refers to Very-High Damages Risks Zones. The regions of Kashmir, the centrals along with westerns Himalaya, North-East Indian regions, North along Middle Bihar & Andaman and Nicobar groups island falls in such zones 5.

#### B. Zone 4 (High Damages)

Zone 4 are liable to intensities of MSK VI to MSK IX. It refers to High Damages Risks Zones. The Indo- Gangetics basins, Jammu & Kashmir along the capitals of India (Delhi) lie in this Zone 4. In Bihar the northern parts of states such as- Raksaul, nears borders of India and Nepal and In Maharashtra, the Patans areas (Koyananager), lies in the Zone 4.

#### C. Zone 3 (Moderate Damages)

Such zones are liable to intensities of MSK VI. The Andaman along Nicobar Island, part of Kashmir, Western Himalaya falls in this zone 3. The Zone 3 was refers to Moderest Damages Risks Zones.

#### D. Zone 2 (Low Damages)

Areas with minors damages (which causes damage to structure with period of more than 1.0 secound) earthquake corresponds to intensity to V to VI of Modified Mercalli Intensity scale. It covered area that was not covers by top 3 seismic-zone.

#### III. EFFECTS OF EARTHQUAKE

The incidents of earthquake were unpredictable and were characterizes by wide-spread losses of life along damages. Few of outcomes of earthquake was depicted by shown diagram:



Fig.(c) Effects Of Earthquake



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue VI June 2020- Available at www.ijraset.com

Normally seismic effect has divides in following category:

- A. Direct Effect
- 1) Surfaces faulting
- 2) Grounds shaking
- 3) Liquefactions
- 4) Structure vibrations

B. In-direct Effect

Such might happen either along or in combinations to added to the damage in such earthquakes. Such seismic effect is:

- 1) Tsunami
- 2) Landslide
- 3) Flood and fire

#### IV. NEW STRUCTURE SYSTEM

Few following latest technique were developed, evaluate and applied to construct such building to with-stand the shakes along vibration causes due to earthquakes:

#### A. Seismic Isolations Systems or Based Isolations Systems

It is collections of structure element which were substantially separated super-structured from sub-structure that rests on shakes grounds, which protects buildings or non-buildings structure integrities.



Fig.(d) Seismic Isolation System

#### B. Energy Dissipations Systems

Energy dissipations systems were device specially design and test to dissipated more quantity of energy-source. The dissipations of seismic-energy, by utilization of such device essentially overcomes acceleration imposes on such structures, that imply a reduce in displacements along base-shear forces.



Fig.(e) Energy Dissipation System



International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue VI June 2020- Available at www.ijraset.com

#### C. Active-control Systems

Such systems, resistant force is not fixe even are in-cum-bent on externally excitations. Active Controlled systems were combinations of computers science-data-processing, sensing technologies, structure dynamic, winds along earthquakes eng.



Fig.(f) Active Control System

#### V. CONCLUSION

In upcoming decades, the field of Earthquakes designs resistant designs of structures are mostly liked to witness significant development:

- A. Performance base designs process may takes centre stages, make conventional-descriptive code obsolete.
- *B.* Development of latest structure system and device may continues of base-isolations, passiv-energy dissipations and activecontrol system, along with the proliferations of non-traditional civil eng material along technique.
- C. The acceptable risks criterions for designs purpose may be prescribe in term of performances objective and hazards level.

#### REFERENCES

- [1] Advanced reinforced concrete design, by PC, Varghese, Prentice-Hall of India Pvt. Ltd., New Delhi, 2001.
- [2] Jain SK (2003) Review of Indian seismic code IS 1893(Part1):2002. ICJ 77:1414
- [3] Joshi DS, Nene RL, Mulay MD (2001) Design of RC structures for EQ resistance. Indian Society of Structural Engineers, Mumbai
- [4] Chopra AK (1995) Dynamics of structures. Prentice Hall of India, New Delhi
- [5] Criteria for Earthquake Resistant Design of Structures -- IS 1893 (Part 1):2016
- [6] Dobry, R., Ramos, R. and Power, M. S., Report MCEER-99-0010, NY, 1999.
- [7] Frankel, A., Mueller, C., Barnhard, T., Perkins, D., Leyendecker, E. V., Dickman, N., Hanson, S. and Hopper, M., US Geologic Survey Open File Report 96-352, June 1996.
- [8] Freeman, S. A., Proc. 6US NCEE, Seattle, 1998.
- [9] Moehle, J. P., Earthq. Spectra, 1992, 3, 403–428.
- [10] Power, M. S., Chiou, S. and Mayes, R. L., in Research Progress and Accomplishments, MCEER, NY, July, 1999.











45.98



IMPACT FACTOR: 7.129







# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24\*7 Support on Whatsapp)