

2 III March 2014

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 228

Compiler Optimization for SIMD type Vector
Processor

Mohammad Suaib1, Mohd. Akbar2,

Department of Computer Science & Engg., Integral University Lucknow, India

Abstract— Performance of the processor can be enhanced by parallelization of instructions in terms of execution. Here we are applying
compiler optimization techniques like loop unrolling, loop peeling for SIMD type Vector Processor. SIMD type vector processor is a high
performance computational model which exploits the computational capabilities of both SIMD and vector architecture. SIMD type vector
processor works on short vector instructions of vector length four and has four processing units which enables execution of four vector
operands simultaneously [1]. To have the model which speeds up the computation in this paper we have created a CDFG (Control Data
Flow graph) which gives the direct translation to the hardware. To create a CDFG we have used the tool SUIF2 and MACHSUIF which is
a research project provided by Stanford University and Harvard university. To create a CDFG from the C source file first we have to do
profiling on it to get the area of source file which have higher run time. We have unrolled the loops to get maximum ILP (Instruction level
Parallelism) [7]. To limit the hardware we have unrolled only up to a maximum size of 4 [1]. Then a CFG (Control Flow Graph) is created
for the source C file. Then the data flow analysis has been done on each basic block of the CFG by using the bvd class provided with
MachSUIF. Then all the DFG (Data Flow graph) of every basic block are combined to get a full CDFG. In this paper We have designed
the new hardware i.e. the SIMD type Vector processor based on HPL-PD VLIW architecture ISA which is supported by trimaran by
default to accelerate the work.

Keywords— SIMD-Vector Architecture, Loop unrolling, ILP, Suif, Machsuif, Loop peeling

I. INTRODUCTION

A compiler is a computer program that transforms source code
written in a programming language i.e. the source language
into another computer language i.e. the target language, often
having a binary form known as object code [2,3]. If the
compiled program can run on a computer whose CPU or
operating system is different from the one on which the
compiler runs, the compiler is known as a cross-compiler. A
program that translates from a low level language to a higher
level one is a decompiler. A program that translates between
high-level languages is called a language translator, source to
source translator, or language converter. A language rewriter
is a program that translates the form of expressions without a
change of language .document is a template.

The output of some compilers may target hardware at a very
low level, for example a Field Programmable Gate Array
(FPGA) or structured Application-specific integrated circuit
(ASIC) [8]. Such compilers are known as hardware compilers
or synthesis tools because the source code they compile

effectively control the final configuration of the hardware and
how it operates; the output of the compilation are not
instructions that are executed in sequence - only an
interconnection of transistors or lookup tables. For example,
XST is the Xilinx Synthesis Tool used for configuring FPGAs
[8]. Similar tools are available from Altera, Synplicity,
Synopsys and other vendors.

A. Compiler optimizations

Compiler optimization is the process of tuning the output of a
compiler to minimize or maximize some attributes of an
executable computer program [4]. The most common
requirement is to minimize the time taken to execute a
program; a less common one is to minimize the amount of
memory occupied. The growth of portable computers has
created a market for minimizing the power consumed by a
program. Compiler optimization is generally implemented
using a sequence of optimizing transformations, algorithms
which take a program and transform it to produce a
semantically equivalent output program that uses fewer

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 229

resources. Some code optimization problems are NP-
complete, or even undecidable. In practice, factors such as the
programmer's willingness to wait for the compiler to complete
its task place upper limits on the optimizations that a compiler
implementer might provide. Optimization is generally a very
CPU- and memory-intensive process.

B. Instruction-level parallelism (ILP)

Instruction-level parallelism (ILP) is a measure of how many
of the operations in a computer program can be performed
simultaneously [5,6]. A goal of compiler and processor
designers is to identify and take advantage of as much ILP as
possible. Ordinary programs are typically written under a
sequential execution model where instructions execute one
after the other and in the order specified by the programmer.
ILP allows the compiler and the processor to overlap the
execution of multiple instructions or even to change the order
in which instructions are executed [7].

C. Loop Unrolling

Loop unrolling is effective in uncovering ILP by exposing
more parallelism to the compiler or underlying hardware [5].
It is, in essence, a technique that transforms loop level
parallelism into instruction level parallelism.

for (i=0; i<8; i++) {

a[i] = b[i] + c[i];

}

Before loop unrolling.

for (i=0; i<8; i+=4) {

a[i+0] = b[i+0] + c[i+0];

a[i+1] = b[i+1] + c[i+1];

a[i+2] = b[i+2] + c[i+2];

a[i+3] = b[i+3] + c[i+3];

}

After loop unrolling.

D. CFG (Control Flow graph)

A control flow graph is a representation of a program where
contiguous regions of code without branches, known as basic
blocks, are represented as nodes in a graph and edges between
nodes indicate the possible flow of the program [9,4]. In a
control flow graph each node in the graph represents a basic
block, i.e. a straight-line piece of code without any jumps or
jump targets; jump targets start a block, and jumps end a
block. Directed edges are used to represent jumps in the
control flow.

E. DFG (data Flow graph)

The purpose of data-flow analysis is to provide global
information about how a procedure or a larger segment of a
program manipulates its data [4,10]. Constant-propagation
analysis seeks to determine whether all assignments to a
particular variable that may provide the value of that variable
at some particular point necessarily give it the same constant
value.

II. PROPOSED HARDWARE MODELING FOR COMPILATION

This section describes the proposed model for creating a
CDFG from the basic C based applications. Here the basic
tools are SUIF2 and the MACHSUIF is also described in
detail to help in understanding of the creation of CDFG. The
CFG pass ant the CDFG pass used in the implementation is
described along with its psuedocode which is written in
MACHSUIF.

A. SUIF Overview

The SUIF2 compiler system can be described as two major
parts: the front-end and the back-end as in Fig.1 The
operations of the front-end consist of lexical analysis, syntax
analysis, semantic analysis, and generation of the SUIF
intermediate format file, file type is filename.suif. In the back-
end, the operations are code optimization and code generation.
The SUIF2 compiler system gives full supports of handling
the SUIF intermediate format file. By applying the SUIF
intermediate format file and related libraries provided by the
SUIF2 compiler system, the analysis and transformation of a

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 230

sequential program can be made easily. The SUIF2 compiler
system is built of many modules and a common driver called
suifdriver. Fig.2 shows the SUIF2 compiler pass which is
formed with importing modules dynamically via the
suifdriver. The SUIF2 compiler system allows user to develop
new modules or compiler passes according to their specific
requirements. Furthermore, programming languages that
SUIF2 compiler system supports in current are as follows,
Fortran, C, C++ and Java.

Fig.1 SUIF2 compiler system

Fig. 2 SUIF2 compiler pass

B. MachSUIF

Machine SUIF is a flexible, extensible, and easily-understood
infrastructure for constructing compiler back ends. Machine
SUIF is both a working compiler and a collection of
analyses/optimizations that can be quickly and easily inserted
into a new compilation environment. Machine-SUIF
distribution contains a working compiler based on the
Stanford SUIF compiler infrastructure (version 2.1). This
compiler is capable of producing optimized code for machines
based on the Alpha or x86 architectures.

C. CDFG PASS

To have the data flow graph the class bvd of the MachSUIF is
used. The bit-vector data flow (BVD) library of Machine
SUIF is a framework for iterative, bit-vector-based data-flow
analyzers. It uses Machine SUIF's control-flow graph (CFG)
library to parse the program being analyzed into basic blocks,
and it associates data-flow results with the CFG nodes.

The BVD library contains two concrete solvers, one that
computes liveness information and another that does reaching-
definitions analysis. The data-flow analyzers do two things:
they identify an interesting class of syntactic or semantic
program elements, and for each such element, they identify
the points in the program to which the element, or some aspect
of the element i.e. flows. For an available-expressions
problem, the elements are syntactic expressions evaluated by
the program, and an expression e flows to point p in the
program if e is computed (generated) on every path to p
without being invalidated (killed) by an assignment to some
variable in e before p is reached. For the reaching-definitions
problem, the universe of interesting elements consists of the
statements that assign to, or otherwise side-affect storage
locations, and these definitions flow to all the program points
reached by paths that don't contain an overriding assignment.
For a liveness problem, the universe consists of storage cells,
such as variables and registers. The liveness of a variable is
generated by a use of the variable, and it flows backward
along control paths until killed by a definition of i.e. an
assignment the variable.

D. CDFG Generation

In this paper we are concentrating to extract ILP from C based
applications which can be computed in a SIMD machine
which exploits the ILP. Loop unrolling and loop peeling is
done to find whether the code is vectorizable or to improve
performance. So here a loop is taken and it is unrolled and
peeled according to the proposed architecture to bring out its

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 231

effectiveness. The loop unrolling and peeling is done by
SUIF2 passes. To implement the proposed work we have used
MachSUIF. In MachSUIF, the IR(Intermediate
Representation) uses a SUIFvm (SUIF virtual machine
architecture) which assumes that the underlying architecture is
a generic RISC which is not biased towards any existing
architecture.

The program code is decomposed into its IR consisting of
operations with minimal complexity i.e. in primitive or atomic
instructions. Then this IR description of the program code is
organized into control data flow graph with primitive
instructions as its nodes and edges denoting control and data
dependencies [11]. Before the CDFG is created loop unrolling
and peeling is done. The flow graph of the CDFG generation
is shown in fig.1. The shaded blocks on the figure shows the
available passes of the MachSUIF infrastructure. The c2suif
pass converts the input ANSI C code to the SUIF frontend i.e.
the code is preprocessed and its SUIF representation is
emitted. After c2suif loop unrolling and peeling is done by a
custom made pass which does it according to our architecture.
In this pass at first the SUIF file is converted to the ANSI C
code and then the loop unrolling and peeling is done on this C
code. The peeling is done in such a manner that the number of
iterations would become a multiple of 4 and unrolling is done
for a size of 4. After the unrolling and peeling the pass again
converts the C code to SUIF IR. The 3rd step is do_lower pass
or an equivalent pass with all necessary transformations which
is provided with SUIF. In this step several machine
independent transformations is done like dismantling of loop
and conditional statements to low-level operations. By doing
the do_lower we translate the higher SUIF representation to
lower SUIF representation. To convert lower SUIF
representation to SUIFvm representation an s2m compiler
pass is used which is available in MachSUIF. After s2m,
architecture independent optimizations are done on IR and a
CFG (Control Flow Graph) is created by pass il2cfg. A CFG
form is got in which the cdfg2dot pass parses on each node of
the CFG and constructs a corresponding CDFG. By this we
get a CDFG of each node.

Fig. 3 Flow graph for CDFG generation

IV. COMOILER FLOW FOR THE SIMD VECTOR PROCESSOR

ARCHITECTURE

To execute software code on the new architecture i.e. a VLIW
processor with a tightly coupled coprocessor which is a SIMD
type Vector model, a compilation flow was developed. The
input to the flow is C code. The code is read into the compiler
and scheduled into instructions that can be performed in
parallel. The final result which is a elcor IR which can be
executed on the new hardware and is simulated in the
simulator SIMU provided with the Trimaran to collect the
binaries or executables of the C based application.

Trimaran was selected as a framework for the SIMD VLIW
compiler. Trimaran was chosen because it is an open source,
extensible VLIW compiler. It contains separate frontend and
back-end code and code that translates the intermediate
representation, IR, between the two. Third-party back-ends
exist to target other architectures. Triceps [12] is a Trimaran
back-end to target the StrongARM processor, and Tritanium
[13] is available to target the Intel Itanium series of
processors. Trimaran was also chosen because the projects
mentioned above serve as examples of how to modify the
code generation for different processor targets.

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 232

Trimaran has a back-end vectorizer that can identify and
exploit data level parallelism for efficient execution on
architectures with SIMD (single-instruction multiple-data)
support. The technique implemented in Trimaran is called
selective vectorization [14]. It creates highly efficient
instruction schedules by distributing computation between
scalar and vector functional units to improve resource
utilization. For processor models that contain an abundance of
scalar and vector processing units, selective vectorization
creates loops with a balance of both vector and scalar
instructions. Since vector and scalar occupy the same loop
body, scalar operations are unrolled by a factor of the vector
length. As such, the technique is most applicable to the short-
vector instruction sets commonly found in today’s multimedia
extensions. The Elcor parameter do_vectorize in $ELCOR
HOME/DRIVER DEFAULTS enables the vectorization of
loops during compilation. The vectorizer is most effective,
and in many cases only applicable, when it has precise
memory dependence information. 4 options are found in
$ELCOR HOME/VECTORIZER DEFAULTS to provide
control in applying the vectorizer:Presently the Trimaran
supports 4 vectorize model. The vectorizer will apply different
techniques and heuristics according to the model selected.
There are four current models implemented. They are:

– Unroll the loop by a factor of vector length.

– Vectorize all vectorizable operations.

– Perform full vectorization or no vectorization. Select the

option with the highest predicted performance after modulo

scheduling.

– Perform selective vectorization.

The SIMD Vector model back-end is closely coupled to code
from the ELCOR back-end. This is done by having a new
.hmdes2 file which specifies our architecture also. The
architecture to be defined is shown in figure 5.3. In this
.hmdes2 file we have added the functionality vectorization
also by enabling the vectorization in the Trimaran. The
proposed architecture is a SIMD VLIW architecture which is a
SIMD Vector model as a tightly coupled co-processor of a
VLIW machine. The VLIW is chosen in the work as it is
already present with Trimaran and thus speeds up the
architecture modelling process.

Fig. 4 The enhanced architecture.

We have made the number of vector units as 4 as proposed
architecture supports a 4- way short vector instructions. Vec
length specifies the vector length in number of elements. In
this thesis as 4-way short vectors are taken the vector length is
fixed as 4. Currently, all vector registers must have the same
length (heterogeneous vector lengths are not supported). vir
static size and vir rotating size: This specifies the number of
static and rotating vector integer registers. Each register
actually consists of vec length integer elements. vfr static size
and vfr rotating size: This specifies the number of static and
rotating vector floating-point registers. Each register actually
consists of vec length floating-point elements. vec integer
units, vec integer perm units, vec integer xfr units: These
specify the number of functional units available for vector
computation, vector permutation operations, and vector-scalar
transfer operations. Here all the functional units like integer
units, float units, permutation units, and subroutine units are
kept as 4 as the hardware model proposed is a SIMD type

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 233

vector processor which is able to operate on 4 instructions at a
time. Only changes that were required for the SIMD Vector
machine were made. The back-end is responsible for
instruction scheduling, register allocation, and code
generation.Further the vector instructions are defined along
with its latencies and other properties in the machine
description provided with Elcor in Trimaran. By running the
elcor we will be provided with an elcor IR which is run in
simu to produce the binaries or executables.

V. CONCLUSION

In this paper we have shown how the binaries are generated
from the benchmark or the C based applications using the tool
Trimaran. The elcor backend was modified to incorporate the
custom hardware which has been generated from the CDFG
which was described in the previous section. Here the custom
hardware is used as a tightly coupled co-processor as a SIMD
type vector processor with the basic hardware which is a
single cluster VLIW machine.

VI. REFERENCES

[1] Mohammad Suaib, Abel Palaty, and Kumar Sambhav
Pandey,”Architecture of SIMD Type Vector Processor”,
Digital Library URI:
http://www.ijcaonline.org/archives/- volume20/number-4
/2418-3233, ISBN: 978-93-80749-15-7, 2011.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
Compilers Principles, Techniques, and Tools, Addison-
Wesley, 1986.

[3] Randy Allen and Ken Kennedy, Optimizing Compilers
for Modern Architectures: A Dependence-based
Approach, Morgan Kaufmann, San Francisco,
California, 2001.

[4] Steven S. Muchnick, ADVANCED COMPILER
DESIGN AND IMPLEMENTATION, Morgan
Kaufmann, 1997.

[5] Davidson, J. W. and Jinturkar S.,“Improving Instruction
level Parallelism by Loop Unrolling and Dynamic
memory Disambiguation,” Technical Report CS-95-13,
Department of Computer Science, University of
Virginia, Charlottesville, February 1995.

[6] Bacon, D. F., Graham, S. L., and Sharp O. J.,“Compiler
Transformations for High-Performance Computing,”

ACM Computing Surveys, 26(4), Dec. 1994, pp. 345-
420.

[7] Abel Palaty, Mohammad Suaib, and Kumar Sambhav
Pandey ,”Exploiting ILP in a SIMD type Vector
Processor,” ACC-2011, will Communications in
Computer and Information Science Series(CCIS), ISSN:
1865:0929.

[8] Takahisa Wada, Shunichi Ishiwata, Katsuyuki Kimura,
Keiri Nakanishi, Masato Sumiyoshi,Takashi Miyamori,
Member, IEEE, “A VLIW Vector Media Coprocessor
With Cascaded SIMD ALUs” IEEE TRANSACTIONS
ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009

[9] Robert Morgan, Building an Optimizing Compiler.
Digital Press, 1998.

[10] Glenn H. Holloway and Michael D. Smith, The
Machine-SUIF Control Flow Graph Library, The
Machine SUIF documentation set, Harvard University,
1998.

[11] Nikolaos Kavvadias and Spiridon
Nikolaidis,”Application Analysis with Integrated
Identification of Complex Instructions for Configurable
Processors,”Proc. of the 14th Intl. Workshop on Power
and Timing Modeling, Optimization and Simulation,
Santorini, Greece, pp. 633-642, September 15-17(2004).

[12] L. N. Chakrapani, W. F. Wong, and K. V.
Palem,“Enhancing the Trimaran compiler infrastructure
to support strongarm code generation,”CREST, Georgia
Institute of Technology, Atlanta, GA, Tech. Rep.
CREST-TR-01-01, 2001.

[13] Y. Chobe, B. Narahari, R. Simha, and
W.Wong,“Tritanium: Augmenting the Trimaran
compiler infrastructure to support ia64 code
generation,”The George Washington University,
Washington DC.

[14] X. Tang, T. Jiang, A. Jones, and P. Banerjee,“Compiler
optimizations in the pact hdl behavioral synthesis tool
for asics and fpgas,” IEEE International SoC Conference
(IEEE-SOC), September 2003.

