

8 VII July 2020

http://doi.org/10.22214/ijraset.2020.7042

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

230 ©IJRASET: All Rights are Reserved

Bilateral Selection Sort
Akshay Zade1, Vinod Mandloi2, Prof. Rupesh Bhoir3

1, 2Department of Computer Application, Sardar Patel Institute of Technology, Mumbai, India
3Assistant Professor, Sardar Patel Institute of Technology, Mumbai, India

Abstract: In today’s digital world data is playing wide role and the amount of the is growing drastically. Sorting of data makes it
easier to handle data in large scale. There are many sorting techniques are available for sorting of data. Some of these techniques
are Bubble Sort, Insertion Sort, Selection Sort, Quick Sort, Merge Sort, Heap Sort, etc. Some sorting techniques work faster for
small amount of data and some work faster for large amount of data.

I. INTRODUCTION
Sorting is process of arranging list of elements to ascending and descending order Information/data growth in digital world leads to
rapid development of sorting algorithm. The sorting algorithms with increased performance and decreased complexity attracts
researcher’s attention towards sorting techniques. Selection sort algorithm is used to sort elements based on min elements for
ascending sort and max element for descending sort. On other hand bilateral sorting implies to sort elements by finding smallest and
largest element at same time and swapping with start and end position of unsorted array.

II. ANALYSIS OF OLD SELECTION SORT ALGORITHM [1]
A. Selection Sort
This is a very easy sorting algorithm to understand and is very useful when dealing with small amounts of data. However, as with
Bubble sorting, a lot of data really slows it down. Selection sort does have one advantage over other sort techniques. Although it
does many comparisons, it does the least amount of data moving. Thus, if your data has small keys but large data area, then selection
sorting may be the quickest.

B. Pseudo Code of Old Selection Sort
Algorithm SelectionSort (X, n) =>X [0...n-1]
For i ← n – 1 to 0
IndexOfLarge ← 0
For j←1 to i
If (X[j]>X [IndexOfLarge))
IndexOfLarge ← large ←X [IndexOfLarge]
X [IndexOfLarge] ← X[i]
X[i] ← Large

III. ANALYSIS OF BILATERAL SELECTION SORT (BSS) ALGORITHM
The idea behind the BSS is to make a better version of selection sort and reduce the time complexity of selection sort by minimizing
the number of iterations i.e. by selecting smallest and largest element at same time and putting them to their appropriate place to get
sorted elements. The time complexity of selection sort is O(N2) whereas the time complexity of BSS is also O(N2).Even if it’s O(N2)
the bilateral performs better because there are less number of iterations as two elements are sorted at a time.

A. Algorithm
1) Step 1: Set MIN AND MAX to location 0
2) Step 2: Set leftshrink = i and rightshrink= n
3) Step 3: Search the minimum and maximum element in the list
4) Step 4: Swap the minimum with List[leftshrink] and Maximum with List[rightshrink]
5) Step 5: Increment min point and decrement max point
6) Step 6: Decrement rightshrink
7) Step 7: Repeat until List/2

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

231 ©IJRASET: All Rights are Reserved

B. Pseudo code
START PROCEDURE
 list: Array of elements
 n: Size of list
 rightshrink: n-1
 FOR i = 0 till n/2
 min = i
 max = i
 FOR leftshrink = i till rightshrink
 IF list[leftshrink] > max

THEN max = list[leftshrink] AND getindexmax = leftshrink
 ELSE IF list [leftshrink] < min

THEN min = list [leftshrink] AND getindexmin = leftshrink

 END-FOR
 Swap in list (list[i] with list[getindexmin])
 IF list[getindexmax] == max

Swap in list (list[rightshrink] with list[getindexmin])
 ELSE

Swap in list (list[rightshrink] with list [getindexmax])
 --rightshrink
 END-FOR
END PROCEDURE

C. Code
public void BSS(int[] arr)
{
 int n = arr.length;
 int rightshrink=n-1;
 int temp=0,min,max,getindexmin,getindexmax;
 for(int i = 0;i < n/2; i++) {
 min = max = arr[i];
 getindexmin = getindexmax = i;
 for (int leftshrink = i; leftshrink <= rightshrink; leftshrink++){
 if (arr[leftshrink] > max){
 max = arr[leftshrink];
 getindexmax = leftshrink;
 }
 else if (arr[leftshrink] < min){
 min = arr[leftshrink];
 getindexmin = leftshrink;

 }
 }
 temp = arr[i];
 arr[i]=arr[getindexmin];
 arr[getindexmin]=temp;
 if (arr[getindexmin] == max) {
 temp = arr[rightshrink];
 arr[rightshrink] =arr[getindexmin];
 arr[getindexmin] =temp;

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

232 ©IJRASET: All Rights are Reserved

 }
 else {
 temp = arr[rightshrink];
 arr[rightshrink] =arr[getindexmax];
 arr[getindexmax] =temp;
 }
 --rightshrink;
 }
}

IV. BREAK DOWN ANALYSIS OF SELECTION SORT WITH BILATERAL SELECTION SORT
BSS Sort works with same structure as Selection sort follows. But the iterations are dynamically calculated on the size of
data which needs to be sort. Selection Sort has the complexity of O(n2) for the best case , worst case and average case.
BSS complexity is been derived (n/2)*(n/2) = O(n2).
Following is the breakdown for every iteration for better understanding.

A. Considering Data of 5 Elements

Selection Sort

Outer Loop 1 2 3 4

Inner Loop 4 3 2 1

Total : Outer Loop total(4) x (Total Inner
Loop(4+3+2+1)) = 14

Bilateral Selection Sort

Outer Loop 1 2

Inner Loop 5 3

Total : Outer Loop total(2) x (Total Inner Loop(5+3)) = 10

B. Considering Data of 6 Elements
 Selection Sort

Outer Loop 1 2 3 4 5

Inner Loop 5 4 3 2 1

Total : Outer Loop total(5) x (Total Inner
Loop(5+4+3+2+1)) = 20

Bilateral Selection Sort

Outer Loop 1 2 3

Inner Loop 6 4 2

Total : Outer Loop total(3) x (Total Inner Loop(6+4+2)) =
15

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

233 ©IJRASET: All Rights are Reserved

C. Considering Data of 7 Elements

Selection Sort

Outer Loop 1 2 3 4 5 6

Inner Loop 6 5 4 3 2 1

Total : Outer Loop total(6) x (Total Inner
Loop(6+5+4+3+2+1)) = 27

Bilateral Selection Sort

Outer Loop 1 2 3

Inner Loop 7 5 3

Total : Outer Loop total(3) x (Total Inner Loop(7+5+3)) =
18

D. Considering Data of 8 Elements

Selection Sort
Outer Loop 1 2 3 4 5 6 7

Inner Loop 7 6 5 4 3 2 1

Total : Outer Loop total(7) x (Total Inner
Loop(7+6+5+4+3+2+1)) = 35

Bilateral Selection Sort

Outer Loop 1 2 3 4

Inner Loop 8 6 4 2

Total : Outer Loop total(4) x (Total Inner Loop(8+6+4+2))
= 24

E. Considering Data of 9 Elements

Selection Sort

Outer Loop 1 2 3 4 5 6 7 8

Inner Loop 8 7 6 5 4 3 2 1

Total : Outer Loop total(8) x (Total Inner
Loop(8+7+6+5+4+3+2+1)) = 44

Bilateral Selection Sort
Outer Loop 1 2 3 4

Inner Loop 9 7 5 3

Total : Outer Loop total(4) x (Total Inner
Loop(9+7+5+3)) = 28

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

234 ©IJRASET: All Rights are Reserved

F. Considering Data of 10 Elements

Selection Sort
Outer
Loop 1 2 3 4 5 6 7 8 9

Inner Loop 9 8 7 6 5 4 3 2 1

Total : Outer Loop total(9) x (Total Inner
Loop(9+8+7+6+5+4+3+2+1)) = 54

Bilateral Selection Sort
Outer Loop 1 2 3 4 5

Inner Loop 10 8 6 4 2

Total : Outer Loop total(5) x (Total Inner
Loop(10+8+6+4+2)) = 35

As per the understanding from the breakdown analysis we find the pattern of total iteration between both the selection sort and bilateral
selection sort as follow:

0

1000000

2000000

0 100 200 300 400 500 600

Comparison of Bilateral Selection Sort and Selection Sort

Bilateral Selection Sort Selection Sort

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

235 ©IJRASET: All Rights are Reserved

 Total Loop Iterations

No of data 5 6 7 8 9 10 11 12 13 14 15

Selection
Sort

1
4

2
0

2
7 35 44 54 65 77 90

10
4

11
9

Bilateral
Selection
Sort

1
0

1
5

1
8 24 28 35 40 48 54 63 70

This data shows the iterations of selection sort with respect to bilateral selection sort and number of iterations in bilateral
sort is lesser which makes it faster than selection sort.

V. COMPARISON ANALYSIS OF SELECTION SORT AND BILATERAL SELECTION SORT (BSS)
The following table shows the detailed analysis of Bilateral Selection Sort and its performance with respect to Selection
Sort Algorithm in nanoseconds.
The above analysis for the comparison between Bilateral Selection Sort and Selection Sort Algorithm is derived from the following
constraints
Dataset of random 50 to 500 numbers are applied on Bilateral Selection Sort and the same dataset is applied on the Selection Sort for
the analysis.
The following dataset is applied 10 times for more accurate result because on every execution of algorithm the CPU internally
processes different task on each thread in the operating system so output execution in nano time differs every time so to get precise
result the random same dataset is applied for 2 times of 1st Iteration of result.
Formula for execution time of algorithm is followed as:
long startTime = System.nanoTime();
BilateralSelectionSortAlgorithm(array)
OR
SelectionSortAlgorithm(array);
long elapsedTime = System.nanoTime() - startTime;
As per the analysis the derived output is been tested

No. of
data

Selection
Sort

Bilateral
Selection Sort Total

50 10 10 20

100 10 10 20

150 10 10 20

200 10 10 20

250 10 10 20

300 10 10 20

350 10 10 20

400 10 10 20

450 10 10 20

500 10 10 20

Total 200

Therefore the comparison chart of Bilateral Selection Sort and Selection Sort is derived where it results to Bilateral Selection Sort
Algorithm works faster compare to Selection Sort Algorithm in sorting data.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

236 ©IJRASET: All Rights are Reserved

VI. CONCLUSION
Logic of Bilateral Selection Sort is based on the Selection sort algorithm. The main difference in Selection sort and Bilateral Selection
Sort is that the Selection sort sorts the data from one end i.e. from largest element of array to smallest element or from smallest to
largest but the later starts sorting from both ends and finds the largest and smallest data elements of array in single iteration and places
those at their appropriate locations then during second iteration it sorts the second largest and second smallest elements from the
remaining array data and places those in their appropriate locations in the array. Similarly, it sorts rest of the data elements and puts
those in their proper positions. Bilateral Selection Sort sorts the data in half iterations as compared to selection sort technique. The
improvement is also of the order.

REFERENCE
[1] Sultanullah Jadoon, Salman Faiz, Prof. Dr. Salim ur Rehman, Prof. Hamid Jan, Design and Analysis of Optimized SelectionSort Algorithm.
[2] Kirti Kaushik, Jyoti Yadav, Kriti Bhatia Design and Analysis of Optimized Selection Sort Algorithm.
[3] Holcers Balazs, Introduction to Sorting Algorithms: A guide to implement sorting algorithms on a step by step basis.

