IJRASET

International Journal For Research in
Applied Science and Engineering Technology

" INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGQGY

Volume: 8 Issue: Vi Month of publication: July 2020

DOIl: http://doi.org/10.22214/ijraset.2020.7042

www.ijraset.com
Call: (£)08813907089 | E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

Bilateral Selection Sort

Akshay Zade', Vinod Mandloi?, Prof. Rupesh Bhoir®
1 2Department of Computer Application, Sardar Patel Institute of Technology, Mumbai, India
3Assistant Professor, Sardar Patel Institute of Technology, Mumbai, India

Abstract: In today’s digital world data is playing wide role and the amount of the is growing drastically. Sorting of data makes it
easier to handle data in large scale. There are many sorting techniques are available for sorting of data. Some of these techniques
are Bubble Sort, Insertion Sort, Selection Sort, Quick Sort, Merge Sort, Heap Sort, etc. Some sorting techniques work faster for
small amount of data and some work faster for large amount of data.

l. INTRODUCTION
Sorting is process of arranging list of elements to ascending and descending order Information/data growth in digital world leads to
rapid development of sorting algorithm. The sorting algorithms with increased performance and decreased complexity attracts
researcher’s attention towards sorting techniques. Selection sort algorithm is used to sort elements based on min elements for
ascending sort and max element for descending sort. On other hand bilateral sorting implies to sort elements by finding smallest and
largest element at same time and swapping with start and end position of unsorted array.

1. ANALYSIS OF OLD SELECTION SORT ALGORITHM [1]
A. Selection Sort
This is a very easy sorting algorithm to understand and is very useful when dealing with small amounts of data. However, as with
Bubble sorting, a lot of data really slows it down. Selection sort does have one advantage over other sort techniques. Although it
does many comparisons, it does the least amount of data moving. Thus, if your data has small keys but large data area, then selection
sorting may be the quickest.

B. Pseudo Code of Old Selection Sort
Algorithm SelectionSort (X, n) =>X [0...n-1]
Fori«~n-1to0

IndexOfLarge <— 0

For j«—1toi

If (X[j]>X [IndexOfLarge))

IndexOfLarge « large «X [IndexOfLarge]
X [IndexOfLarge] < X[i]

X[i] « Large

1. ANALYSIS OF BILATERAL SELECTION SORT (BSS) ALGORITHM
The idea behind the BSS is to make a better version of selection sort and reduce the time complexity of selection sort by minimizing
the number of iterations i.e. by selecting smallest and largest element at same time and putting them to their appropriate place to get
sorted elements. The time complexity of selection sort is O(N2) whereas the time complexity of BSS is also O(N2).Even if it’s O(N2)
the bilateral performs better because there are less number of iterations as two elements are sorted at a time.

A. Algorithm

1) Step 1: Set MIN AND MAX to location 0

2) Step 2: Set leftshrink =i and rightshrink=n

3) Step 3: Search the minimum and maximum element in the list

4) Step 4: Swap the minimum with List[leftshrink] and Maximum with List[rightshrink]
5) Step 5: Increment min point and decrement max point

6) Step 6: Decrement rightshrink

7) Step 7: Repeat until List/2

©IJRASET: All Rights are Reserved

230

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

B. Pseudo code
START PROCEDURE
list: Array of elements
n: Size of list
rightshrink: n-1
FOR i =0till n/2
min =i
max = i
FOR leftshrink = i till rightshrink
IF list[leftshrink] > max
THEN max = list[leftshrink] AND getindexmax = leftshrink
ELSE IF list [leftshrink] < min
THEN min = list [leftshrink] AND getindexmin = leftshrink

END-FOR
Swap in list (list[i] with list[getindexmin])
IF list] getindexmax] == max
Swap in list (list[rightshrink] with list[getindexmin])
ELSE
Swap in list (list[rightshrink] with list [getindexmax])
--rightshrink
END-FOR
END PROCEDURE

C. Code
public void BSS(int[] arr)
{
int n = arr.length;
int rightshrink=n-1;
int temp=0,min,max,getindexmin,getindexmax;
for(inti=0;i <n/2; i++) {
min = max = arr[i];
getindexmin = getindexmax = i;
for (int leftshrink = i; leftshrink <= rightshrink; leftshrink++){
if (arr[leftshrink] > max){
max = arr[leftshrink];
getindexmax = leftshrink;
}
else if (arr[leftshrink] < min){
min = arr[leftshrink];
getindexmin = leftshrink;
}
}
temp = arr[i];
arr[i]=arr[getindexmin];
arr[getindexmin]=temp;
if (arr[getindexmin] == max) {
temp = arr[rightshrink];
arr[rightshrink] =arr[getindexmin];
arr[getindexmin] =temp;

©IJRASET: All Rights are Reserved 231

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

else {
temp = arr[rightshrink];
arr[rightshrink] =arr[getindexmax];
arr[getindexmax] =temp;

}
--rightshrink;

}

V. BREAK DOWN ANALYSIS OF SELECTION SORT WITH BILATERAL SELECTION SORT
BSS Sort works with same structure as Selection sort follows. But the iterations are dynamically calculated on the size of
data which needs to be sort. Selection Sort has the complexity of O(n2) for the best case , worst case and average case.
BSS complexity is been derived (n/2)*(n/2) = O(n2).
Following is the breakdown for every iteration for better understanding.

A. Considering Data of 5 Elements
Selection Sort

Outer Loop 1 2 3 4

Inner Loop 4 3 2 1

Total : Outer Loop total(4) x (Total Inner
Loop(4+3+2+1)) =14

Bilateral Selection Sort
Outer Loop 1 2

Inner Loop 5 3

Total : Outer Loop total(2) x (Total Inner Loop(5+3)) = 10

B. Considering Data of 6 Elements
Selection Sort

Outer Loop 1 2 3 4 5

Inner Loop 5 4 3 2 1

Total : Outer Loop total(5) x (Total Inner
Loop(5+4+3+2+1)) = 20

Bilateral Selection Sort

Outer Loop 1 2 3

Inner Loop 6 4 2

Total : Outer Loop total(3) x (Total Inner Loop(6+4+2)) =
15

©IJRASET: All Rights are Reserved PRY)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

C. Considering Data of 7 Elements

Selection Sort

Outer Loop 1 2 3 4 5 6
Inner Loop 6 5 4 3 2 1

Total : Outer Loop total(6) x (Total Inner
Loop(6+5+4+3+2+1)) = 27

Bilateral Selection Sort
Outer Loop 1 2 3

Inner Loop 7 5 3

Total : Outer Loop total(3) x (Total Inner Loop(7+5+3)) =
18

D. Considering Data of 8 Elements

Selection Sort
Outer Loop 1 2 3 4 5 6 7

Inner Loop 7 6 5 4 3 2 1

Total : Outer Loop total(7) x (Total Inner
Loop(7+6+5+4+3+2+1)) = 35

Bilateral Selection Sort

Outer Loop 1 2 3 4

Inner Loop 8 6 4 2

Total : Outer Loop total(4) x (Total Inner Loop(8+6+4+2))
=24

E. Considering Data of 9 Elements

Selection Sort

Outer Loop 1 2 3 4 5 6 7 8
Inner Loop 8 7 6 5 4 3 2 1

Total : Outer Loop total(8) x (Total Inner
Loop(8+7+6+5+4+3+2+1)) = 44

Bilateral Selection Sort
Outer Loop 1 2 3 4

Inner Loop 9 7 5 3

Total : Outer Loop total(4) x (Total Inner
Loop(9+7+5+3)) = 28

©IJRASET: All Rights are Reserved 233

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

F. Considering Data of 10 Elements

Selection Sort

Outer
Loop 1 2 3 4 5 6 7 89

InnerLoop 9 8 7 6 5 4 3 2 1

Total : Outer Loop total(9) x (Total Inner
Loop(9+8+7+6+5+4+3+2+1)) = 54

Selection Sort

Data Execution Times (Random Values) [Average

50 31852 33621 34683 33975 32913 32205 33267 32559 33974 34328 333377
100 99093 99447 100508 98739 99801 108648 107233 110064 110772 109710 1044015
150 380801 397081 360274 389295 373369 384694 489449 371954 400266 370184 391736.7
200 380093 394957 372661 382924 364167 370538 363105 382924 370598 373369 3755336
250 557753 597744 667110 595975 609777 597744 581819 667110 586773 607299 606910.4
300 774696 858218 889362 818935 1098519 819289 818934 822119 826012 794869 852095.3
350 1134971 1463748 1113737 1111967 1208583 1131432 1231940 1095334 1111968 1098873 1170255.3
400 1408893 1572396 1851981 1477197 1486397 1466226 1561779 1498077 1570981 1443222 1533714.9
450 1634330 1580537 1605663 1604601 1550809 1509402 1778723 1567442 1508693 1778723 1611892.3
500 1805266 2306040 1756781 2306040 1716081 1619465 1712189 1805265 1847026 1874985 18749138

Bilateral Selection Sort

Data E ion Times (Random Values) A g

50 22650 24066 22649 24066 22650 22650 24420 24065 24066 21942 233224
100 77151 75382 76798 75382 75382 77151 72550 78212 77151 72550 75770.9
150 148993 145455 153949 154656 145455 151825 150056 157488 151825 150055 150975.7
200 251625 248794 248441 252688 253749 248086 251626 249148 253042 241363 249856.2
250 385401 473170 379739 392480 377615 391064 381863 374785 379739 377615 3913471
300 546428 543950 541827 634904 560938 599868 539704 545012 534749 536165 558354.5
350 724088 723026 858925 717010 760894 717010 719488 740014 746030 723381 742986.6
400 928291 927583 1028800 993409 935369 972175 935015 971467 1067375 938200 969768.4
450 1173192 1190534 1173901 1180271 1179563 1166822 1179563 1163991 1180978 1177086 1176590.1
500 1445345 1463394 1579829 1455255 1533113 1515772 1519665 1498431 1594338 1515418 1512056

Comparison of Bilateral Selection Sort and Selection Sort
2000000
1000000

0
0 100 200 300 400 500 600

—@—Bilateral Selection Sort ~—@—Selection Sort

Bilateral Selection Sort
Outer Loop 1 2 3 4 5

Inner Loop 10 8 6 4 2

Total : Outer Loop total(5) x (Total Inner
Loop(10+8+6+4+2)) = 35

As per the understanding from the breakdown analysis we find the pattern of total iteration between both the selection sort and bilateral
selection sort as follow:

©IJRASET: All Rights are Reserved 234

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

Total Loop Iterations

No of data 56 7 8 9 10 11 12 13 14 15
Selection 12 2 10 11
Sort 4 0 7 35 44 54 65 77 90 4 9
Bilateral

Selection 111

Sort 0 5 8 24 28 35 40 48 54 63 70

This data shows the iterations of selection sort with respect to bilateral selection sort and number of iterations in bilateral
sort is lesser which makes it faster than selection sort.

V. COMPARISON ANALYSIS OF SELECTION SORT AND BILATERAL SELECTION SORT (BSS)
The following table shows the detailed analysis of Bilateral Selection Sort and its performance with respect to Selection
Sort Algorithm in nanoseconds.
The above analysis for the comparison between Bilateral Selection Sort and Selection Sort Algorithm is derived from the following
constraints
Dataset of random 50 to 500 numbers are applied on Bilateral Selection Sort and the same dataset is applied on the Selection Sort for
the analysis.
The following dataset is applied 10 times for more accurate result because on every execution of algorithm the CPU internally
processes different task on each thread in the operating system so output execution in nano time differs every time so to get precise
result the random same dataset is applied for 2 times of 1% Iteration of result.
Formula for execution time of algorithm is followed as:
long startTime = System.nanoTime();
BilateralSelectionSortAlgorithm(array)
OR
SelectionSortAlgorithm(array);
long elapsedTime = System.nanoTime() - startTime;
As per the analysis the derived output is been tested

No. of Selection Bilateral
data Sort Selection Sort Total
50 10 10 20
100 10 10 20
150 10 10 20
200 10 10 20
250 10 10 20
300 10 10 20
350 10 10 20
400 10 10 20
450 10 10 20
500 10 10 20
Total 200

Therefore the comparison chart of Bilateral Selection Sort and Selection Sort is derived where it results to Bilateral Selection Sort
Algorithm works faster compare to Selection Sort Algorithm in sorting data.

©IJRASET: All Rights are Reserved

235

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429
Volume 8 Issue VII July 2020- Available at www.ijraset.com

VI. CONCLUSION

Logic of Bilateral Selection Sort is based on the Selection sort algorithm. The main difference in Selection sort and Bilateral Selection
Sort is that the Selection sort sorts the data from one end i.e. from largest element of array to smallest element or from smallest to
largest but the later starts sorting from both ends and finds the largest and smallest data elements of array in single iteration and places
those at their appropriate locations then during second iteration it sorts the second largest and second smallest elements from the
remaining array data and places those in their appropriate locations in the array. Similarly, it sorts rest of the data elements and puts
those in their proper positions. Bilateral Selection Sort sorts the data in half iterations as compared to selection sort technique. The
improvement is also of the order.

REFERENCE

[1] Sultanullah Jadoon, Salman Faiz, Prof. Dr. Salim ur Rehman, Prof. Hamid Jan, Design and Analysis of Optimized SelectionSort Algorithm.
[2] Kirti Kaushik, Jyoti Yadav, Kriti Bhatia Design and Analysis of Optimized Selection Sort Algorithm.

[3] Holcers Balazs, Introduction to Sorting Algorithms: A guide to implement sorting algorithms on a step by step basis.

©IJRASET: All Rights are Reserved

236

d lIsRA

ef n\m
cross’ COPERNICUS

10.22214/1JRASET 45,98 IMPACT FACTOR: IMPACT FACTOR:
7.129 7.429

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (V) (24*7 Support on Whatsapp)

