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VLSI Hardware Modelling Of Multifunction GF 
Architecture for Cryptographic Devices   
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Abstract — this paper presents a hardware structure for polynomial binary-to-residue number system (PRNS) conversion 
using parallel field structures. This structure is based only on polynomial multipliers along with GF architecture. This 
concise work is motivated by the existing RNS binary-to-RNS converters, which are particular inefficient for larger values of 
n. The experimental results obtained for a given dynamic range suggest that the projected conversion structures are able to 
drastically progress the forward conversion efficiency, with greater successful hardware modeling. And GF (Galois Field) 
can highly increase proper selection and utilization of the polynomial functions for high end applications like Cryptography. 
The proposed logistic technique is simulated and verified by Xilinx tools along with Virtex – 5 FPGA board. 
Index Terms — RNS, Polynomial multifunction, cryptography, Xilinx tools and Virtex -5 FPGA.   

I. INTRODUCTION 

In general advanced and high speed digital system designs includes an application of cryptography, error correction coding, 
computer arithmetic and logic, DSP and many more which depends on the competent insight of arithmetic over finite fields of 
the form which is represented as  GF(2n) such that n is an integer. Also it is very familiar that Cryptographic applications as per 
security reason they are of special kind of digital entities and they necessitate huge integer operands. Competent field 
multiplication with large operands is crucial for achieving a gratifying cryptosystem performance, since multiplication is the 
most time- and area-consuming operation. As a result, there is a require for increasing the speed of cryptosystems along with the 
implementation of modular arithmetic with the least possible area consequence. An understandable approach to achieve this 
would be during parallelization of their operations. 
It is very familiar that the Residue Number System (RNS) has modular nature by means whit offers the prospective for swift, 
parallel reckoning since that it is a carry-free calculation system, also it is to be noted that RNS is a non-weighted number 
system, which uses remainders to represent numbers. The basic arithmetic operations (add, subtract, and multiply) are easily 
implemented in RNS and data computations are implemented over operands that are extensively shorter than the resulting RNS 
Dynamic Range. Typical applications for RNS are in VLSI Digital Signal Processing (DSP), Cryptography, Network Security, 
High end filtering, convolutions, correlations, and Fast Fourier Transform computations etc.  
Basically the RNS modulus set is set up by defining the moduli of (mi) relatively positive prime integers. A number P is 
represented in RNS by its residues pi = <X>mi, where pi is the remainder of the division of X by mi. and then to implement 
complete RNS system Conversion from weighted number system to RNS (binary to-RNS or forward conversion), and vice 
versa (RNS-to-binary or reverse conversion) is required. At the very beginning the development of proposed system on RNS 
was mainly persistent on the three modulus set {2n − 1, 2n, 2n + 1}, but today the research has been extended to dynamic range 
of prime integers also such as {2n − k, 2n, 2n + k}, k ɛ Z+ such that the implementation of such method can drastically improves 
the circuit performance. 
The literature survey reveals the fact that various techniques are already proposed like serial method, full parallel method or 
serial-parallel technique etc, to reduce the weight representation of the number systems, which is the root cause of occupying lot 
of system memory and consumes un wanted power consumption and finally the architectures for high end process applications 
becomes much more slower. Therefore a new memory-less standard forward conversion structure for a DR of m = qn-bit, using 
{2n  +/- k} moduli, is proposed, considering n ≥ 2. The projected approach divides the qn input bits into q input sets, and 
computes the particular residue value using modular additions and constant multiplications so that the idea of constant 
multipliers does not lead to any excess memory consumption. A novel method for integrating residue arithmetic in a dual-field 
Montgomery modular multiplication algorithm for integers and for polynomials in GF (2n) presented in this paper. The 
mathematical circumstances that need to be satisfied for a valid RNS/PRNS amalgamation are verified. The plagiaristic 
architecture is extremely parallelizable and adaptable, as it supports binary-to-RNS/PRNS and RNS/PRNS-to-binary 
conversions, Mixed Radix Conversion (MRC) for integers and polynomials, dual-field Montgomery multiplication, and dual-
field modular exponentiation and inversion in the same hardware. 

II. DESIGN DEVELOPMENT 

To promote low power high performance applications of RNS, Various dynamic macro Techniques are modeled on VLSI. The 
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VLSI architectures developed as follows. The VLSI architecture proposed with this article for use of RNS is to reduce on chip 
memory consumption adopts the macro selection condition which results in to dynamic implementation of major techniques. 
The literature survey revealed that various state of work has been proposed fir polynomial based multiplication for 
Cryptography to overcome the limitations of RNS systems. Montgomery’s algorithm is one of the fields of art for dual-field 
implementations. The Montgomery architectures perform well for RSA key word lengths, by processing word-size data, since 
RSA key sizes (512, 1024, 2048, etc.) are always multiples of word size. However, in Error Correction Code technique, key 
sizes are not integer multiples of word size,  it sense that, if these architectures were to be used in Error Correction Code 
techniques, they would require more clock cycles for their implementation thus more power consumption. The above mentioned 
problem can be over ruled with suggesting as architecture configured at bit-level entity. The above technique are modeled and 
implemented by targeting the area and power consumption, the next proceeding section will conclude all about proposed 
scheme. This proposal is also realized into field programmable gate array (FPGA) prototyping system using Xilinx Viitex-5 
unit. The maximum operating frequency of this design is more than 500 MHz. 

TABLE 1 
SUMMARY OF DESIGN CONSIDERATIONS 

Sno Design consideration Selection 
1 Compiler  Xilinix14.4Vivado 
2 Programming Language Verilog  
3 FPGA Virtex -5  
4 Interface USB 

 

III. MODELING OF GF (2N) MULTIFUNCTION RNS TECHNIQUES  

A. RNS Representation 
An RNS is defined by a set of relatively prime integers called the moduli. The moduli-set is denoted as {m1, m2… mn} where 
mk is the kth modulus. Each integer can be represented as a set of smaller integers called the residues. The residue-set is denoted 
as {r1, r2 , …,rn } where rk is the kth residue. The residue rk is defined as the least positive remainder when is divided by the 
modulus. This relation can be symbolically written based on the congruence: X mod mk = rk The same congruence can be written 
in an alternative notation as: │X│ mk  =  rk The RNS is capable of uniquely representing all integers that lie in its dynamic range. 
The dynamic range {m1, m2… mn} is determined by the moduli-set and denoted as  

 
The RNS provides exceptional depiction for all integers in the range between 0 and. If the integer is greater than , the RNS 
representation repeats itself. Therefore, more than one integer might have the same residue representation. It is important to 
accentuate that the moduli have to be relatively prime to be able to exploit the full dynamic range 
B. Mathematical Modeling Of RNS Conversion 
Allowing for a binary representation of X, with 4n-bit of Dynamic Range, it is required to compute in order to attain the residue 
modulo {2n − k} of X. 
 

 
 

Where X [k: l] represents the bits l to k of the integer X. 
Similarly, the residue calculation modulo {2n + k}, is achieved as  
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Taking into deliberation the meticulous cases of modulo {2n − 1} and {2n + 1}, conversion from binary-to-RNS can be 
performed as per given calculation.  
 

 
 

 

C. PRNS Representation 
Analogous to RNS, a PRNS is definite through a set of a finite pair-wise relatively prime polynomial which can be denoted by 
the dynamic range of the PRNS. In PRNS each and every polynomial has a unique PRNS representation: 

IV. MONTGOMERY MULTIPLICATION 
A. GF (p) Arithmetic  
Field elements in GF (p) are integers in the range of 0 to p-1 and modulo arithmetic is performed the relevant algorithm is as 
shown in figure1 which do not contain any division process. 

 
Figure1: Montgomery Multiplication process 

B. GF (2n) Arithmetic  
Field elements in GF (2n) are polynomials represented as binary vectors of a predefined and fixed dimension, relative to a given 
polynomial basis the algorithm will work as shown in the figure2. 
 

 
Figure2: Polynomial Multiplication Process 

C. The Proposed Dual-Field Montgomery Multiplication 
Algorithm 
To enhance the design vitality the above two algorithms are embedded into each other to design a Dual-Field Montgomery 
Multiplication unit and the algorithm is shown in the following figure3. The only difference is that integer 
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additions/subtractions and multiplications are replaced by polynomial ones. And also the degree of input and output 
polynomials are both less than n the reason it allows the construction of a modular exponentiation algorithm. 

 
Figure3: Proposed embedded algorithm 

Proposed architecture for dual field polynomial modular multiplication presumptuous conversion is based on a parallel 
technique. In this technique both technique i and ii are embedded into each This architecture exhibits the modular reduction of 
each calculation with integrating GF(2n) and GF(p) modulo unit, instead of adding all terms and reducing then iteratively at the 
conclusion. The suggested architecture is as shown in figure4.  

 

 
Figure4: proposed architecture 

The key design of this architecture that the dual field i.e., embedded of GF(2n) and GF(p) in to single architecture and  are 
associated in the design description which facilitates the logic transfer from one stage to other for example one bit length to 
other bit length can be easily avail without changing the complete architecture. The implementation of dual field lead to this 
proposed system. As shown in figure4.  

D. Front-End Modeling 
This phase of implementation contains the following stages simulation using Xilinx 14.4 Vivado suite, synthesis using Xilinx 
14.4 XST and verifying on Virtex – 5 FPGA board. 

V. SIMULATION AND SYNTHESIS RESULTS 

The Verilog RTL Description of the above article is simulated and synthesized using Xilinx14.4 (ISE-Simulator), 
implementation of all the above macro encoding techniques are successfully synthesized and verified on Virtex -5 FPGA board 
and the results are shown in figure5, figure6. 

 

Figure5: Simulation output  
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Figure6: Synthesis output  

The Synthesized report is summarized in the following Table2. 
TABLE 2 

SUMMARY OF SYNTHESIS REPORT 
S.No Parameter Quantification  
  1 Slice Logic utilization < 5% 
  2 Slice logic Distribution88% 
  3 IO utilization 12% 
  4 Specific feature Factor 3% 
  5 Total Logic Delay(nS) 12.646 
  6 Total Offset Delay(nS)25.577 
  7 Total path Delay(nS) 27.577 
  8 Real time Compilation(S)34 
  9 Total memory (KB) 394220 

VI. CONCLUSION 

In this paper, we have presented VLSI hardware modeling of dual field GF architecture for high speed application like 
Cryptography. In addition, their part is usual to increase in potential technology of power and area usage. This paper has 
realized with Xilinx tools along with Virtex -5 FPGA. Such designs are suggested to exhibits a competitive performance with 
current work. 
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