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Abstract:  Modern processors have a clock speed in the range of GHz while the main memory (DRAM) has a read/write speed in 
the range of MHz, so the processor needs to halt till the memory completes its request. The halt period may seem to be very small, 
but when seen on a broad scale, we see that most of the processor's time is wasted in the halt cycles. Cache memory is intended to 
reduce the speed gap between the fast processor and slow memory. When a program needs to access data from the RAM 
(physical memory), it first checks inside the cache (SRAM). Replacement policies are methods by which the memory blocks are 
replaced in a filled cache. Cache replacement policies play a significant role in the memory organization of a processor and 
dictate how fast a processor will receive the block demanded. Various replacement policies such as RRIP, ABRRIP, AIRRIP, etc. 
have been designed but not been implemented, unlike LRU. LRU is predominantly used in most of the systems. The ABRRIP 
policy has two levels of RRPV – one at block and one at the core level. We observe that the performance of the ABRRIP policy 
improves as we increase the number of instructions during the simulation. 
Keywords: LRU, Replacement Policies, RRIP, ABRRIP, IPC, Cache memory 

I. INTRODUCTION 
Cache memory is designed to reduce the speed gap between the fast processor and slow memory. It is expensive compared to 
physical memory. When a program needs to access data from the DRAM (physical memory), it first checks inside the cache. A 
cache hit occurs if the required block is found in the cache, else a cache miss is said to occur [9], [10], [11]. The method by which 
these blocks are replaced inside the cache is known as Cache Replacement Policies. Today, we have Multicore architecture, and 
each core has its L1 (Instruction and Data Cache) and L2 (which is combined) [8]. All the cores share the Last Level Cache (LLC). 
As the number of cores is increasing day-by-day, the burden on LLC is increasing, and an efficient replacement policy needs to be 
implemented to reduce this burden. Cache memory performance is calculated based on Access latency, Hit ratio, and IPC. The 
access latency is the amount of time taken by the CPU to access the data or instruction [4], [6]. Hit ratio is the number of hits 
received by the Cache Memory w.r.t. the request. IPC (Instructions Per Cycle) is the inverse of CPI (Cycles Per Instruction) i.e. the 
number of cycles taken by the processor to execute an instruction. In a Multicore environment, multiple instructions are executed on 
different cores, and hence CPI cannot be used as a performance metric. Thus, we use IPC as a performance metric as it defines the 
number of instructions executed by all cores in a single clock cycle of a processor. 
An access pattern is a way in which workload gives memory requests to the system. There are several cache access patterns 
commonly found in applications used to compare the performance of different replacement policies [1], [5]. Cache-friendly patterns 
have a near-immediate re-reference interval (example: a typical access pattern that repeats itself – a1 a2 a2 a1 a1 a2). Since the 
pattern is getting repeated, it receives hits more frequently, and do not pollute the cache with degrading blocks. Thrashing access 
pattern is a cyclic access pattern of length ‘k’ that repeats ‘N’ times (example: a1 a2 a3 a4 a1 a2 a3 a4). Streaming access patterns 
have a distant re-reference interval (example: a1 a2 a3 a4 b1 b2 b3 b4 a5 a6 a7 a8 b5 b6). A recency-friendly access pattern is a 
pattern which is accessed recently. LRU (Least Recently Used) policy evicts the block that has not been used for a long time, the 
block with distant re-reference interval. If the pattern length is greater than the number of blocks inside the cache (cache line size), it 
causes Cache Thrashing, and LRU receives no hits unless cache size increases to hold all the entries of the access pattern. LRU 
always predicts a block with near-immediate re-reference interval on a cache hit or miss. So, the applications with distant re-
reference interval (example: Streaming applications), performs badly under LRU. Thus, LRU is not Scan-resistant (Scans are the 
blocks with distant re-reference intervals).  

II. MOTIVATION 
Over the years, the clock speed of the processor has increased drastically. Earlier it was 10MHz (1980’s), now we have a processor 
with 3-4GHz frequency. On the other side, there is not much improvement in the Memory speed (read/write speed). Today’s 
memory has a speed in the range of MHz, while the processors run on GHz scale. Cache memory has reduced this speed gap. Cache 
memory is made of SRAM and expensive to implement. Hence, we need to look at other parameters to improve the performance of 
the cache. While comparing two systems running on the same frequency, a program is executed on both systems, and the 
Time/Program is calculated. Time/Program is (Instructions/Program) Х (Cycles/Instruction) Х (Time/Cycle) [14].  
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Assuming L1 cache has an access latency of 1ns with a 100% hit-ratio, then CPU will take 100ns to load 100 blocks of data in a row. 
If the hit ratio of L1 is reduced by 1%, CPU will take 99ns to load the data from L1, and 10ns to load the missed data from L2. We 
see if the hit ratio is reduced simply by 1%, the CPU’s performance degraded by 10%, earlier it was taking 100ns, and it took 110ns. 
Here, we assumed the missed data is sitting in the L2. As we move towards L3 and main-memory the access latency keeps on 
increasing. So, to improve the Cache performance access latency, hit-ratio and IPC are considered. 

III. COMPARISION OF RRIP, AIRRIP AND ABRRIP  
A. RRIP (Re-reference Interval Prediction) replacement policy 
NRU (Not-Recently Used) used a 1-bit register (two possibilities 0 or 1) to identify whether the new block arrived has a near-
immediate re-reference interval or distant re-reference interval [1]. It can lead to inefficient use of Cache, as the blocks get evicted 
as soon as they arrive if it doesn’t receive any hit in the next cycle.  
Thus, the distant blocks can evict cache-friendly blocks if a Cache-friendly block doesn’t receive any hits, known as scans. RRIP is 
the extension of the NRU policy. RRIP makes use of the M-bit register giving us 2M-1 RRPV values to differentiate between 
different blocks present in the Cache.  
M-bit register gives some time to the Policy to learn about the pattern to decide which block to evict, making it Scan-resistant. The 
given access pattern (a1 a2 a2 a1 b1 b2 b3 b4 a1 a2 a2 a1) shown in Fig.1 is a combination of the Cache-friendly and Streaming 
application.  
In RRIP, a new block will have an RRPV value of 2M -2. Upon receiving a hit for the second time, the RRPV gets equal to ‘0’, and 
on a cache miss the RRPV of all blocks increments by ‘1’. During the eviction, the block with maximum RRPV value (2M-1) is 
selected as a victim. If all the blocks have the same RRPV, then RRPV of all the blocks is incremented to max_RRPV, and the 
victim is selected randomly. We can see in the case of LRU ‘a1’ got evicted though it belonged to Cache-friendly application. In the 
case of RRIP, ‘a1’ and ‘a2’ were preserved until the end, thus giving more hits. For the given access pattern, we can say that RRIP 
outperforms LRU. Also, we can see that ‘b2’ got evicted first instead of ‘b1’ though ‘b2’ arrived later than ‘b1’. Hence, justifying 
RRIP is not recency-friendly. 

 

 
Fig. 1 LRU and RRIP comparison for the pattern a1 a2 a2 a1 b1 b2 b3 b4 a1 a2 a2 a1 [1] 

B. AIRRIP (Adaptive Insertion Re-reference Interval Prediction) replacement policy 
From Fig.2, we saw that RRIP overlooks the recency information of the block. To overcome this issue, an additional register is used 
to keep a track of the recency-information of the blocks [3]. Along with the M-bit RRPV register, the N-bit ARV register is used, 
which holds the information of the time the block got accessed.  
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For the given access pattern (a1 a2 a3 a4 a4 a3 a2 a1 b1 b2 a1 a2) shown in Fig.2, we can see that AIRRIP outperforms RRIP. In 
AIRRIP, during a cache hit, the ARV value gets updated to ‘0’ similar to RRIP. But, if there is already a block with ARV = 0 (‘a4’) 
in the cache and another block receives a hit, then the ARV value will get incremented for the block with ARV = 0, leaving ARV of 
other blocks unaffected (‘a1’ and ‘a2’). Upon a cache miss, ARV of all the blocks gets incremented by ‘1’. If the cache is full, the 
block with max_RRPV + max_ARV gets selected as a victim. As this policy needs to check both RRPV and ARV, it adds a little 
overhead. 

 

 
Fig. 2 RRIP and AIRRIP comparison for the pattern a1 a2 a3 a4 a4 a3 a2 a1 b1 b2 a1 a2 

C. ABRRIP (Application Behaviour Aware Re-reference Interval Prediction) replacement policy 
In modern multicore processors, LLC gets shared among all the cores running on different applications [8]. The data of the core 
with the Streaming application can interfere with the data of the core with Cache-friendly applications at LLC. Since the streaming 
applications need data frequently, it can evict Cache-friendly blocks leading to inefficient use of Cache memory. Hence, a policy is 
introduced which can differentiate the blocks not only at the block level but also at the application level, thus the name Application 
Behaviour Aware RRIP [2]. In ABRRIP, block-level RRPV (Br) and core level RRPV (Cr) are combined to get Application 
behavior aware RRPV value (ABr). To give more significance to the core-level ‘α’ parameter is multiplied with ‘Cr’ value. The 
given access pattern (a1 b1 b2 b3 a2 b4 b5 b6 a2 b7 b8 b9 a1) shown in Fig.3 is a mixed access pattern. We can see that RRIP 
receives no-hit, while ABRRIP receives some hits. On a cache hit, the ABr (‘Br’ and ‘Cr’) value gets updated to ‘0’. During a cache 
miss, ‘α.Cr’ value gets incremented along with RRPV (‘Br’). If the Cache is full, the block with max_ABr gets selected as a victim. 
For a given access pattern, we can see that ABRRIP outperforms RRIP. In the case of RRIP, ‘b2’ stayed in the Cache polluting it, 
and caused the eviction of other blocks that have arrived recently. But in ABRRIP, ‘b1’and ‘b2’ got evicted before ‘b3’ promoting 
recency-friendliness. Thus, ABRRIP promotes cache-friendliness and recency-friendliness better than RRIP. 

 
Fig. 3 RRIP and ABRRIP comparison for the access pattern a1 b1 b2 b3 a2 b4 b5 b6 a2 b7 b8 b9 a1 
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D. ABRRIP, AIRRIP and RRIP comparison for two Cache friendly applications 
From Fig.4, we see that for a combination of Cache-friendly + Cache-friendly running in a 2-core environment; all the three policies 
give the same number of hits. Since the main motive of all the three policies is to promote Cache-friendly block inside a workload, 
if all the workloads are Cache-friendly, then each workload will be promoted equally and hence all the cache-friendly workloads 
will behave the same as there is no Streaming / Thrashing / Recency un-friendly workload to be sacrificed. 

 

 
Fig. 4 Comparison of RRIP, AIRRIP and ABRRIP for Cache-friendly applications 

IV. PERFORMANCE IMPROVEMENT OF ABRRIP  
In the case of ABRRIP, as we increase the number of instructions or workload provided to the policy, an improvement in its Hit 
ratio and IPC is observed. This is because the ABRRIP policy is capable of handling a huge workload at a time. When we increase 
the number of instructions, the number of cycles will increase, but this increment is not linear, meaning the instructions executed per 
cycle increases drastically. From the given Fig.5, we can observe that both’ a1’ and ‘a2’ are kept in a cache by the algorithm untill 
the end. We can conclude that the higher the instruction count goes, the number of cache-friendly blocks inside the cache will 
increase. It eventually gives us a non-linear increase in IPC. 

 
Fig. 5 ABRRIP’s performance for more instructions 
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V. EXPERIMENTAL METHODOLOGY AND IMPLEMENTATION OF REPLACEMENT POLICIES 
A. Simulating Environment 
To demonstrate the working of RRIP and ABRRIP policies, we have made use of the GEM5 simulator [1], [13]. It is an open-source 
Linux based platform where all the components emulated using C++ scripts, and the components configured using Python scripts. 
The simulator is used in System Emulation (SE) mode, as we want to emulate only a few parts such as the processor and memory 
and not the entire system. In SE mode, calls made to OS are also emulated. The architecture used is x86 with 512Kbytes of main 
memory (RAM), and DerivO3 (Out-of-order) CPU type.  
The system simulation was done for a 4-core processor. The L1-D cache size of 64Kb, L1-I cache size of 32Kb, L2 cache size of 
2Mb, and LLC cache size of 16Mb is used. The L1-D and L1-I had cache associativity of 2, L2, and L3 had cache associativity of 8 
and 16 respectively. 

 
B. Benchmarks  
To test our design, we ran executable files from SPEC06 Benchmark Suite that has different types of benchmarks [1], [12]. These 
benchmarks emulate various applications such as C-code compilation, AI Game playing, AI Pattern recognition, etc. We run a 
combination of the benchmarks (GCC + MILC + LBM + GROMACS) that is one Cache-friendly and three Streaming for about 1 
million instructions and fast-forwarding it by 1 billion instructions to prevent initial compulsory misses. For ABRRIP, we increase 
the instructions from 1 million to 10 million in steps. 

 

VI. RESULTS 
 

TABLE I 
Read Hit Ratio and Write Hit Ratio For Different Policies 

Mix type CPU Number ABRRIP BRRIP LRU MRU 
RHR WHR RHR WHR RHR WHR RHR WHR 

 
 
1 Cache 
Friendly + 3 
Streaming 

CPU 0 0.9769 0.9984 0.9408 0.9940 0.9402 0.9928 0.9000 0.9757 
CPU 1 0.8577 0.9961 0.6649 0.8932 0.6652 0.8932 0.6626 0.8921 
CPU 2 0.6619 0.4756 0.5888 0.6566 0.1194 0.2434 0.5538 0.6129 
CPU 3 0.6820 0.9775 0.8661 0.9967 0.8640 0.9962 0.8239 0.9918 
G-Mean 0.7842 0.8246 0.7515 0.8730 0.5039 0.6809 0.7222 0.8528 

 

 
Fig. 6 Comparison of RHR for different policies 
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Fig.7 Comparison of WHR for different policies 

 
TABLE II 

IPC Comparison of Different Policies 
 Mix 
Type 

CPU Number ABRRIP BRRIP MRU LRU 

1 Cache 
Friendly  
+ 3 
Streaming 
  

CPU0 1.0105 0.272403 0.153097 0.257109 
CPU1 0.8641 0.46403 0.43286 0.4612 
CPU2 0.0729 0.145112 0.124374 0.139855 
CPU3 0.5988 0.539563 0.410415 0.535875 
G-Mean 0.441853 0.31541 0.241166 0.307034 

 

 
Fig. 8 Comparison of IPC for different policies 

 
The IPC Comparison or improvement in IPC is shown in Fig.8. We see that as we increase the number of instructions from 1 
million to 10 million, the IPC improves by 46.55% that is the higher the instruction count goes, the number of cache-friendly blocks 
inside cache will increase. 
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Table III 
ABRRIP Comparison For Different Number Of Instructions 

Mix Type CPU 
Number 

ABRRIP  
(1 Million 
Instructions) 

ABRRIP  
(5 Million 
Instructions) 

ABRRIP  
(10 Million 
Instructions) 

RHR WHR RHR WHR RHR WHR 
1 Cache 
Friendly 
 +  
3 
Streaming 

CPU 0    0.9379  0.9757    0.9563    0.9932     0.9769  0.9984 
CPU 1   0.6626     0.8921    0.6639    0.8948     0.8577  0.9961 
CPU 2   0.5538     0.6129    0.6655    0.5455     0.6619  0.4756 
CPU 3   0.8239     0.9918    0.8738    0.9949     0.6820  0.9775 
G-Mean   0.7297   0.8528  0.7794 0.8333  0.7842  0.8246 

 
 

TABLE IV 
IPC Comparison Of ABRRIP For Different Number Of Instructions 

Mix Type  
CPU Number 

ABRRIP 
(1 million 
Instructions) 

ABRRIP 
(5 million 
Instructions) 

ABRRIP 
(10 million 
Instructions) 

 
1 Cache 
Friendly + 3 
Streaming 

CPU 0 0.251726 0.264859 1.0105 
CPU 1 0.454613 0.453193 0.8641 
CPU 2 0.13862 0.189329 0.0729 
CPU 3 0.520904 0.511264 0.5988 
G-MEAN 0.3015007 0.328315 0.441853 

 
 

 
Fig. 9 IPC Comparison of ABRRIP for different number of instructions 

VII. CONCLUSION AND FUTURE WORK 
As we can see from Fig.6,7 and 8, the ABRRIP is better than other Replacement policies such as LRU, MRU, and RRIP. It is seen 
for one Cache-friendly and three Streaming applications running on a quad-core processor. Theoretically, it is observed from Fig.4 
that for a combination of two Cache-Friendly applications running on a two-core processor, ABRRIP, AIRRIP, and RRIP behaves 
the same. It is observed that as we increase the number of instructions during the simulation for ABRRIP policy, its IPC increases 
by 46.55%. It is because the ABRRIP policy is capable of handling a huge workload at a time. When we increase the number of 
instructions, the number of cycles will increase, but this increment is not linear, meaning the instructions executed per cycle 
increases drastically.  
The project is observed on X86 architecture, it can be extended to ARM. The algorithm needs to be tested for a variety of different 
mixtures and benchmarks. Recency-friendly can be implemented in ABRRIP to boost its performance for mixtures other than CF. 
The projected can be tested and observed for multithreaded benchmark suites like the PARSEC benchmark suite. 
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