

8 VIII August 2020

https://doi.org/10.22214/ijraset.2020.31031

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VIII Aug 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved

784

Performance Improvement of Existing Cache Replacement Policies
Siddhi R. Kadam1, R. N. Awale2

1, 2Department of Electrical Engineering, VJTI College, Mumbai

Abstract: Modern processors have a clock speed in the range of GHz while the main memory (DRAM) has a read/write speed in
the range of MHz, so the processor needs to halt till the memory completes its request. The halt period may seem to be very small,
but when seen on a broad scale, we see that most of the processor's time is wasted in the halt cycles. Cache memory is intended to
reduce the speed gap between the fast processor and slow memory. When a program needs to access data from the RAM
(physical memory), it first checks inside the cache (SRAM). Replacement policies are methods by which the memory blocks are
replaced in a filled cache. Cache replacement policies play a significant role in the memory organization of a processor and
dictate how fast a processor will receive the block demanded. Various replacement policies such as RRIP, ABRRIP, AIRRIP, etc.
have been designed but not been implemented, unlike LRU. LRU is predominantly used in most of the systems. The ABRRIP
policy has two levels of RRPV – one at block and one at the core level. We observe that the performance of the ABRRIP policy
improves as we increase the number of instructions during the simulation.
Keywords: LRU, Replacement Policies, RRIP, ABRRIP, IPC, Cache memory

I. INTRODUCTION
Cache memory is designed to reduce the speed gap between the fast processor and slow memory. It is expensive compared to
physical memory. When a program needs to access data from the DRAM (physical memory), it first checks inside the cache. A
cache hit occurs if the required block is found in the cache, else a cache miss is said to occur [9], [10], [11]. The method by which
these blocks are replaced inside the cache is known as Cache Replacement Policies. Today, we have Multicore architecture, and
each core has its L1 (Instruction and Data Cache) and L2 (which is combined) [8]. All the cores share the Last Level Cache (LLC).
As the number of cores is increasing day-by-day, the burden on LLC is increasing, and an efficient replacement policy needs to be
implemented to reduce this burden. Cache memory performance is calculated based on Access latency, Hit ratio, and IPC. The
access latency is the amount of time taken by the CPU to access the data or instruction [4], [6]. Hit ratio is the number of hits
received by the Cache Memory w.r.t. the request. IPC (Instructions Per Cycle) is the inverse of CPI (Cycles Per Instruction) i.e. the
number of cycles taken by the processor to execute an instruction. In a Multicore environment, multiple instructions are executed on
different cores, and hence CPI cannot be used as a performance metric. Thus, we use IPC as a performance metric as it defines the
number of instructions executed by all cores in a single clock cycle of a processor.
An access pattern is a way in which workload gives memory requests to the system. There are several cache access patterns
commonly found in applications used to compare the performance of different replacement policies [1], [5]. Cache-friendly patterns
have a near-immediate re-reference interval (example: a typical access pattern that repeats itself – a1 a2 a2 a1 a1 a2). Since the
pattern is getting repeated, it receives hits more frequently, and do not pollute the cache with degrading blocks. Thrashing access
pattern is a cyclic access pattern of length ‘k’ that repeats ‘N’ times (example: a1 a2 a3 a4 a1 a2 a3 a4). Streaming access patterns
have a distant re-reference interval (example: a1 a2 a3 a4 b1 b2 b3 b4 a5 a6 a7 a8 b5 b6). A recency-friendly access pattern is a
pattern which is accessed recently. LRU (Least Recently Used) policy evicts the block that has not been used for a long time, the
block with distant re-reference interval. If the pattern length is greater than the number of blocks inside the cache (cache line size), it
causes Cache Thrashing, and LRU receives no hits unless cache size increases to hold all the entries of the access pattern. LRU
always predicts a block with near-immediate re-reference interval on a cache hit or miss. So, the applications with distant re-
reference interval (example: Streaming applications), performs badly under LRU. Thus, LRU is not Scan-resistant (Scans are the
blocks with distant re-reference intervals).

II. MOTIVATION
Over the years, the clock speed of the processor has increased drastically. Earlier it was 10MHz (1980’s), now we have a processor
with 3-4GHz frequency. On the other side, there is not much improvement in the Memory speed (read/write speed). Today’s
memory has a speed in the range of MHz, while the processors run on GHz scale. Cache memory has reduced this speed gap. Cache
memory is made of SRAM and expensive to implement. Hence, we need to look at other parameters to improve the performance of
the cache. While comparing two systems running on the same frequency, a program is executed on both systems, and the
Time/Program is calculated. Time/Program is (Instructions/Program) Х (Cycles/Instruction) Х (Time/Cycle) [14].

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VIII Aug 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved

785

Assuming L1 cache has an access latency of 1ns with a 100% hit-ratio, then CPU will take 100ns to load 100 blocks of data in a row.
If the hit ratio of L1 is reduced by 1%, CPU will take 99ns to load the data from L1, and 10ns to load the missed data from L2. We
see if the hit ratio is reduced simply by 1%, the CPU’s performance degraded by 10%, earlier it was taking 100ns, and it took 110ns.
Here, we assumed the missed data is sitting in the L2. As we move towards L3 and main-memory the access latency keeps on
increasing. So, to improve the Cache performance access latency, hit-ratio and IPC are considered.

III. COMPARISION OF RRIP, AIRRIP AND ABRRIP
A. RRIP (Re-reference Interval Prediction) replacement policy
NRU (Not-Recently Used) used a 1-bit register (two possibilities 0 or 1) to identify whether the new block arrived has a near-
immediate re-reference interval or distant re-reference interval [1]. It can lead to inefficient use of Cache, as the blocks get evicted
as soon as they arrive if it doesn’t receive any hit in the next cycle.
Thus, the distant blocks can evict cache-friendly blocks if a Cache-friendly block doesn’t receive any hits, known as scans. RRIP is
the extension of the NRU policy. RRIP makes use of the M-bit register giving us 2M-1 RRPV values to differentiate between
different blocks present in the Cache.
M-bit register gives some time to the Policy to learn about the pattern to decide which block to evict, making it Scan-resistant. The
given access pattern (a1 a2 a2 a1 b1 b2 b3 b4 a1 a2 a2 a1) shown in Fig.1 is a combination of the Cache-friendly and Streaming
application.
In RRIP, a new block will have an RRPV value of 2M -2. Upon receiving a hit for the second time, the RRPV gets equal to ‘0’, and
on a cache miss the RRPV of all blocks increments by ‘1’. During the eviction, the block with maximum RRPV value (2M-1) is
selected as a victim. If all the blocks have the same RRPV, then RRPV of all the blocks is incremented to max_RRPV, and the
victim is selected randomly. We can see in the case of LRU ‘a1’ got evicted though it belonged to Cache-friendly application. In the
case of RRIP, ‘a1’ and ‘a2’ were preserved until the end, thus giving more hits. For the given access pattern, we can say that RRIP
outperforms LRU. Also, we can see that ‘b2’ got evicted first instead of ‘b1’ though ‘b2’ arrived later than ‘b1’. Hence, justifying
RRIP is not recency-friendly.

Fig. 1 LRU and RRIP comparison for the pattern a1 a2 a2 a1 b1 b2 b3 b4 a1 a2 a2 a1 [1]

B. AIRRIP (Adaptive Insertion Re-reference Interval Prediction) replacement policy
From Fig.2, we saw that RRIP overlooks the recency information of the block. To overcome this issue, an additional register is used
to keep a track of the recency-information of the blocks [3]. Along with the M-bit RRPV register, the N-bit ARV register is used,
which holds the information of the time the block got accessed.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VIII Aug 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved

786

For the given access pattern (a1 a2 a3 a4 a4 a3 a2 a1 b1 b2 a1 a2) shown in Fig.2, we can see that AIRRIP outperforms RRIP. In
AIRRIP, during a cache hit, the ARV value gets updated to ‘0’ similar to RRIP. But, if there is already a block with ARV = 0 (‘a4’)
in the cache and another block receives a hit, then the ARV value will get incremented for the block with ARV = 0, leaving ARV of
other blocks unaffected (‘a1’ and ‘a2’). Upon a cache miss, ARV of all the blocks gets incremented by ‘1’. If the cache is full, the
block with max_RRPV + max_ARV gets selected as a victim. As this policy needs to check both RRPV and ARV, it adds a little
overhead.

Fig. 2 RRIP and AIRRIP comparison for the pattern a1 a2 a3 a4 a4 a3 a2 a1 b1 b2 a1 a2

C. ABRRIP (Application Behaviour Aware Re-reference Interval Prediction) replacement policy
In modern multicore processors, LLC gets shared among all the cores running on different applications [8]. The data of the core
with the Streaming application can interfere with the data of the core with Cache-friendly applications at LLC. Since the streaming
applications need data frequently, it can evict Cache-friendly blocks leading to inefficient use of Cache memory. Hence, a policy is
introduced which can differentiate the blocks not only at the block level but also at the application level, thus the name Application
Behaviour Aware RRIP [2]. In ABRRIP, block-level RRPV (Br) and core level RRPV (Cr) are combined to get Application
behavior aware RRPV value (ABr). To give more significance to the core-level ‘α’ parameter is multiplied with ‘Cr’ value. The
given access pattern (a1 b1 b2 b3 a2 b4 b5 b6 a2 b7 b8 b9 a1) shown in Fig.3 is a mixed access pattern. We can see that RRIP
receives no-hit, while ABRRIP receives some hits. On a cache hit, the ABr (‘Br’ and ‘Cr’) value gets updated to ‘0’. During a cache
miss, ‘α.Cr’ value gets incremented along with RRPV (‘Br’). If the Cache is full, the block with max_ABr gets selected as a victim.
For a given access pattern, we can see that ABRRIP outperforms RRIP. In the case of RRIP, ‘b2’ stayed in the Cache polluting it,
and caused the eviction of other blocks that have arrived recently. But in ABRRIP, ‘b1’and ‘b2’ got evicted before ‘b3’ promoting
recency-friendliness. Thus, ABRRIP promotes cache-friendliness and recency-friendliness better than RRIP.

Fig. 3 RRIP and ABRRIP comparison for the access pattern a1 b1 b2 b3 a2 b4 b5 b6 a2 b7 b8 b9 a1

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VIII Aug 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved

787

D. ABRRIP, AIRRIP and RRIP comparison for two Cache friendly applications
From Fig.4, we see that for a combination of Cache-friendly + Cache-friendly running in a 2-core environment; all the three policies
give the same number of hits. Since the main motive of all the three policies is to promote Cache-friendly block inside a workload,
if all the workloads are Cache-friendly, then each workload will be promoted equally and hence all the cache-friendly workloads
will behave the same as there is no Streaming / Thrashing / Recency un-friendly workload to be sacrificed.

Fig. 4 Comparison of RRIP, AIRRIP and ABRRIP for Cache-friendly applications

IV. PERFORMANCE IMPROVEMENT OF ABRRIP
In the case of ABRRIP, as we increase the number of instructions or workload provided to the policy, an improvement in its Hit
ratio and IPC is observed. This is because the ABRRIP policy is capable of handling a huge workload at a time. When we increase
the number of instructions, the number of cycles will increase, but this increment is not linear, meaning the instructions executed per
cycle increases drastically. From the given Fig.5, we can observe that both’ a1’ and ‘a2’ are kept in a cache by the algorithm untill
the end. We can conclude that the higher the instruction count goes, the number of cache-friendly blocks inside the cache will
increase. It eventually gives us a non-linear increase in IPC.

Fig. 5 ABRRIP’s performance for more instructions

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VIII Aug 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved

788

V. EXPERIMENTAL METHODOLOGY AND IMPLEMENTATION OF REPLACEMENT POLICIES
A. Simulating Environment
To demonstrate the working of RRIP and ABRRIP policies, we have made use of the GEM5 simulator [1], [13]. It is an open-source
Linux based platform where all the components emulated using C++ scripts, and the components configured using Python scripts.
The simulator is used in System Emulation (SE) mode, as we want to emulate only a few parts such as the processor and memory
and not the entire system. In SE mode, calls made to OS are also emulated. The architecture used is x86 with 512Kbytes of main
memory (RAM), and DerivO3 (Out-of-order) CPU type.
The system simulation was done for a 4-core processor. The L1-D cache size of 64Kb, L1-I cache size of 32Kb, L2 cache size of
2Mb, and LLC cache size of 16Mb is used. The L1-D and L1-I had cache associativity of 2, L2, and L3 had cache associativity of 8
and 16 respectively.

B. Benchmarks
To test our design, we ran executable files from SPEC06 Benchmark Suite that has different types of benchmarks [1], [12]. These
benchmarks emulate various applications such as C-code compilation, AI Game playing, AI Pattern recognition, etc. We run a
combination of the benchmarks (GCC + MILC + LBM + GROMACS) that is one Cache-friendly and three Streaming for about 1
million instructions and fast-forwarding it by 1 billion instructions to prevent initial compulsory misses. For ABRRIP, we increase
the instructions from 1 million to 10 million in steps.

VI. RESULTS

TABLE I
Read Hit Ratio and Write Hit Ratio For Different Policies

Mix type CPU Number ABRRIP BRRIP LRU MRU
RHR WHR RHR WHR RHR WHR RHR WHR

1 Cache
Friendly + 3
Streaming

CPU 0 0.9769 0.9984 0.9408 0.9940 0.9402 0.9928 0.9000 0.9757
CPU 1 0.8577 0.9961 0.6649 0.8932 0.6652 0.8932 0.6626 0.8921
CPU 2 0.6619 0.4756 0.5888 0.6566 0.1194 0.2434 0.5538 0.6129
CPU 3 0.6820 0.9775 0.8661 0.9967 0.8640 0.9962 0.8239 0.9918
G-Mean 0.7842 0.8246 0.7515 0.8730 0.5039 0.6809 0.7222 0.8528

Fig. 6 Comparison of RHR for different policies

1.55602987
1.491161668

1.433038009

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ABRRIP

BRRIP

MRU

LRU

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VIII Aug 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved

789

Fig.7 Comparison of WHR for different policies

TABLE II

IPC Comparison of Different Policies
 Mix
Type

CPU Number ABRRIP BRRIP MRU LRU

1 Cache
Friendly
+ 3
Streaming

CPU0 1.0105 0.272403 0.153097 0.257109
CPU1 0.8641 0.46403 0.43286 0.4612
CPU2 0.0729 0.145112 0.124374 0.139855
CPU3 0.5988 0.539563 0.410415 0.535875
G-Mean 0.441853 0.31541 0.241166 0.307034

Fig. 8 Comparison of IPC for different policies

The IPC Comparison or improvement in IPC is shown in Fig.8. We see that as we increase the number of instructions from 1
million to 10 million, the IPC improves by 46.55% that is the higher the instruction count goes, the number of cache-friendly blocks
inside cache will increase.

1.210938
627

1.282126
009

1.252467
582

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ABRRIP

BRRIP

MRU

LRU

1.439098077
ABRRIP

1.027280018
RRIP

0.761463783
MRU

1
LRU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VIII Aug 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved

790

Table III
ABRRIP Comparison For Different Number Of Instructions

Mix Type CPU
Number

ABRRIP
(1 Million
Instructions)

ABRRIP
(5 Million
Instructions)

ABRRIP
(10 Million
Instructions)

RHR WHR RHR WHR RHR WHR
1 Cache
Friendly
 +
3
Streaming

CPU 0 0.9379 0.9757 0.9563 0.9932 0.9769 0.9984
CPU 1 0.6626 0.8921 0.6639 0.8948 0.8577 0.9961
CPU 2 0.5538 0.6129 0.6655 0.5455 0.6619 0.4756
CPU 3 0.8239 0.9918 0.8738 0.9949 0.6820 0.9775
G-Mean 0.7297 0.8528 0.7794 0.8333 0.7842 0.8246

TABLE IV
IPC Comparison Of ABRRIP For Different Number Of Instructions

Mix Type
CPU Number

ABRRIP
(1 million
Instructions)

ABRRIP
(5 million
Instructions)

ABRRIP
(10 million
Instructions)

1 Cache
Friendly + 3
Streaming

CPU 0 0.251726 0.264859 1.0105
CPU 1 0.454613 0.453193 0.8641
CPU 2 0.13862 0.189329 0.0729
CPU 3 0.520904 0.511264 0.5988
G-MEAN 0.3015007 0.328315 0.441853

Fig. 9 IPC Comparison of ABRRIP for different number of instructions

VII. CONCLUSION AND FUTURE WORK
As we can see from Fig.6,7 and 8, the ABRRIP is better than other Replacement policies such as LRU, MRU, and RRIP. It is seen
for one Cache-friendly and three Streaming applications running on a quad-core processor. Theoretically, it is observed from Fig.4
that for a combination of two Cache-Friendly applications running on a two-core processor, ABRRIP, AIRRIP, and RRIP behaves
the same. It is observed that as we increase the number of instructions during the simulation for ABRRIP policy, its IPC increases
by 46.55%. It is because the ABRRIP policy is capable of handling a huge workload at a time. When we increase the number of
instructions, the number of cycles will increase, but this increment is not linear, meaning the instructions executed per cycle
increases drastically.
The project is observed on X86 architecture, it can be extended to ARM. The algorithm needs to be tested for a variety of different
mixtures and benchmarks. Recency-friendly can be implemented in ABRRIP to boost its performance for mixtures other than CF.
The projected can be tested and observed for multithreaded benchmark suites like the PARSEC benchmark suite.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue VIII Aug 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved

791

VIII. ACKNOWLEDGEMENT
I thank all those people whose support and co-operation has been an invaluable asset during this project. I thank my guide Dr. R.N.
Awale for guiding me throughout this project and sharing his valuable suggestions at every step. It would have been impossible to
complete this project without their support, criticism, encouragement, and guidance. Also, I would want to thank Dr.Bhosle, lab-in-
charge, and the Computer lab officials for providing me the technical support. I convey my gratitude also to Dr. Faruk Kazi, Head of
Department for his motivation and providing various facilities, which helped me in the whole process of this stage of the project. I
thank my family and friends for providing constant support and pushing me to conduct this research efficiently.

REFERENCES
[1] G. Jia, X. Li, C. Wang, X. Zhou and Z. Zhu, "Cache Promotion Policy Using Re-reference Interval Prediction," 2012 IEEE International Conference on

Cluster Computing, Beijing, 2012, pp. 534-537
[2] P. Lathigara, S. Balachandran and V. Singh, "Application behavior aware re-reference interval prediction for shared LLC," 2015 33rd IEEE International

Conference on Computer Design (ICCD), New York, NY, 2015, pp. 172-179
[3] X. Zhang, C. Li, H. Wang and D. Wang, "A Cache Replacement Policy Using Adaptive Insertion and Re-reference Prediction," 2010 22nd International

Symposium on Computer Architecture and High Performance Computing, Petropolis, 2010, pp. 95-102
[4] S. Sreedharan and S. Asokan, "A cache replacement policy based on re-reference count," 2017 International Conference on Inventive Communication and

Computational Technologies (ICICCT), Coimbatore, 2017, pp. 129-134
[5] Qaisar Javaid, Ayesha Zafar, Muhammad Awais, Munam Shah. Cache Memory: An Analysis on Replacement Algorithms and Optimization Techniques.

Mehran University Research Journal of Engineering and Technology, Mehran University of Engineering and Technology, Jamshoro, Pakistan, 2017, 36 (4),
pp.831-840

[6] S. Kumar and P. K. Singh, "An overview of modern cache memory and performance analysis of replacement policies," 2016 IEEE International Conference on
Engineering and Technology (ICETECH), Coimbatore, 2016, pp. 210-214

[7] Newton, S. K. Mahto, S. Pai and V. Singh, "DAAIP: Deadblock Aware Adaptive Insertion Policy for High Performance Caching," 2017 IEEE International
Conference on Computer Design (ICCD), Boston, MA, 2017, pp. 345-352

[8] Nirmol Munvar, Shoba Gopalakrishnan, Arati Phadke, “Dynamic Non-Decaying ABRIP for Shared Level 3 Cache Memory Systems”, International Journal of
Innovative Science and Research Technolog, Volume 4, Issue 10, October – 2019

[9] W. Stallings, “Cache Memory,” in Computer Organization and Architecture, 8 ed., Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2006
[10] Carl Hamache, “Cache Memory Organization,” in Computer Organization, 5 ed., McGrawHill Publications
[11] Cache replacement techniques on Wikipedia. [Online]. Available https://en.m.wikipedia.org/wiki/Cache_replacement_policies
[12] The SPEC2006 website [Online]. Available: https://www.spec.org/cpu2006/
[13] The Gem5 website. [Online]. Available: http://www.gem5.org/Main_Page
[14] L1 and L2 CPU Cache working. [Online]. Available: https://www.extremetech.com/extreme/188776-how-l1-and-l2-cpu-caches-work-and-why-theyre-an-

essential-part-of-modern-chips

