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Abstract: Electrochemical discharge machining is recognized as one of the novels and hybrid processes for machining non-
conductive materials irrespective of their chemical and physical properties. It utilizes the application of thermal heat and 
chemical dissolution to remove the material. Since the ECDM process comprises the involvement of several input variables, the 
tool electrode feed rate is identified as the crucial variable that signifies the formation of gas film underneath the tool electrode 
based on gap availability. This present study focusses on the performance evaluation of the ECDM process based on tool 
electrode feed rate i.e., the effect of tool electrode feed rate on material removal rate (MRR) is evaluated. Applied voltage, 
electrolyte concentration are the other two variables picked alongside tool feed rate while MRR is selected as a response 
parameter. The experiments are performed according to Taguchi’s L9 orthogonal array. Results revealed that the tool feed rate 
significantly affects the material removal as too high feed deteriorates the MRR. The combination of input variables for 
maximizing the MRR is acquired through S/N ratios and determined as 4mm/min, 50V and 20 wt.%, tool feed being the 
dominant one with 76.86 % contribution. 
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I. INTRODUCTION 
With the increased demand for miniaturized products in the fields of micro-electro-mechanical system (MEMS) like glass in micro-
fluidic devices, the development of the advanced non-conventional machining process also increases [1]. ECDM is used as a hybrid 
non-conventional technique for machining non-conductive materials with micro-features. It combines the machining attributes of 
the electrochemical machining (ECM) and electric discharge machining (EDM) process. ECDM consists of two electrodes, one 
being a tool electrode (cathode) and another being an auxiliary electrode (anode). These electrodes are separated by a small distance 
known as the inter-electrode gap (IEG) and dipped inside the aqueous solution of an electrolyte along with the work material as 
shown in Figure 1.  
When the applied voltage is provided between the two electrodes, the formation of the gas bubbles (hydrogen and oxygen) starts at 
the cathode and anode respectively. With the further increase in voltage, the formation rate increases further which escalates the 
hydrogen bubble density at the cathode. These tiny bubbles physically coalescence with each other and transformed into a large 
bubble or often called gas film that insulates the tool electrode. This phenomenon is called as tool blanketing. It constricts the flow 
of the current within the circuit and its value drop to zero. Thereafter, an electric spark is generated owing to the electric breakdown 
of the gas film. Once the electric spark is produced, the work material is placed and maintained underneath the tool electrode at a 
very small distance (known as the machining gap). The material is removed due to the thermal heating of the sparks followed by the 
chemical dissolution [2,3]. 
ECDM was first demonstrated by Kurafuji and Suda [4] in 1968 in which they mentioned the possibility of glass drilling with the 
help of electric discharges. Basak and Ghosh [5] successfully demonstrated the mechanism of material removal in ECDM and 
emphasized the critical voltage-current values for generating the spark. 
Wuthrich et al. [7-8] made several contributions to analyzing the fundamental principles of the ECDM process alongside the gas 
film phenomena. Numerous studies have been performed for studying the material removal analysis concerning different input 
variables [9-10]. Several authors have performed critical analysis on the ECDM process and highlighted the future areas for 
improving the machining performance [11-13]. Rajput et al. [6,14-17] performed experiments to analyze the effect of applied 
voltage and electrolyte concentration on MRR. It was found that both applied voltage and electrolyte concentration increases the 
MRR with their level increase. The tool feed rate also substantially controls the machining performance of the process. Tool feed 
rate should be selected wisely since tool low feed rate often results in high machining time while tool high feed rate may cause tool 
physical contact with the work material [18,19]. 
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Fig. 1 Schematic diagram of the ECDM principle Operation [6] 

It causes damage to the tool or work material. Behroozfar et al. [19] performed studies on tool-related parameters and highlighted 
the major areas for improving the process related to tool feed. They put forward a crucial phenomenon of tool i.e., stick and jump. 
The selection of tool feed rate is important since it controls the machining between the tool and work material. The machining gap 
enables the flow of electrolyte that further forms the effective gas film underneath the tool. Thus, the machining gap serves a crucial 
purpose that helps in maintaining a stable gas film which further relies on the tool feed rate. Apart from experimental studies, 
various numerical studies have been performed to date that discusses the development of a thermal model for analyzing the MRR in 
the ECDM process [20-22].  
Based on the literature, it is evident that the ECDM process still possesses the scope for improvement and its exploration related to 
tool feed needs further analysis. This study investigates the effect of tool feed rate on MRR followed by the optimization of MRR 
for its maximization. 

II. METHODOLOGY AND MEASUREMENTS 
The experiments were carried out on a developed ECDM set up (fabricated in the house) and integrated into the vertical milling 
machine. The electrolytic cell was made up of polycarbonate material which is non-reactive in nature. It consists of a non-reactive 
fixture for holding work material which is dipped inside the electrolyte as shown in Figure 2. Stainless steel of diameter 1 mm was 
used for producing micro-holes in the glasswork material. A soda-lime glass of 1 mm thickness was used as a work material. A full-
wave continuous DC voltage of range 0-80 V and 10 A was used as a power source. 

 
Fig. 2 ECDM experimental setup 
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The MRR is computed as the weight difference before and after the micro-hole fabrication process divided by the total machining 
time, expressed as  

 MRR=((ݐݓଵ − (ଶݐݓ ⁄(ݐ  (1) 
where wt1= work material weight before micro-hole fabrication (g), wt2 = glass material weight after micro-hole fabrication (g), and 
t=time in minutes. A weighing machine (model: CAY220, make: CAS corporation) having a resolution of 0.0001g was used for 
measurement. An average of three measurements was considered. The experiments were performed according to orthogonal L9 
array with three input variables having three levels. Applied voltage, electrolyte concentration, and tool feed rate were chosen as an 
input variable while MRR was selected as a response characteristic. The machining conditions used in this study are illustrated in 
Table 1.  

TABLE 1 Machining conditions used for micro-hole drilling 

Constant Variable Input variables 
Levels I II III 

Cathode and Anode Material Stainless steel Tool feed rate (mm/min) A 4 5 6 
Electrolyte KOH Applied Voltage (V) B 40 45 50 

Electrolyte temperature 50ᴼC Electrolyte Concentration 
(wt/v %) 

C 15 20 25 

Electrolyte Level 1 mm (approx.) Machining time (min) 4 

III. RESULTS AND DISCUSSIONS 
A. S/N Ratio analysis 
The S/N ratio for MRR is computed based on “higher the better” approach as given in equation  

 
ܵ ܰ =  −10 logଵ଴[

1
݊

ൗ ෍ݕ௜ଶ]
௡

௜ୀଵ

 (2) 

where ݕ௜= response measurements in each experiment; n=number of measurements.  

The measured MRR and corresponding S/N ratio are given in Table 2. Generally, higher magnitudes of the S/N ratio indicate that 
the combination of input variables corresponding to that experiment number is the desired result. However, in this study the delta 
value i.e., the difference between the highest and lowest mean S/N ratio was used to identify the optimum set of input variables. The 
delta values for three levels of input variables are shown in Table 3. Figure 3 shows the main effects plot of the MRR S/N ratio. 

TABLE 2 Taguchi’s L9 Design and Response measurements of MRR  
Exp Tool feed rate 

(mm/min) 
Applied 

Voltage (V) 
Electrolyte 

Concentration 
 (wt/v. %) 

MRR 
(mm3/min) 

S/N Ratio 
(dB) 

1 4 40 10 0.7985 -1.9545 
2 4 45 15 0.8214 -1.7089 
3 4 50 20 0.8654 -1.2557 
4 5 40 15 0.7732 -2.2342 
5 5 45 20 0.7964 -1.9774 
6 5 50 10 0.8215 -1.7078 
7 6 40 20 0.7554 -2.4365 
8 6 45 10 0.7122 -2.948 
9 6 50 15 0.7257 -2.7849 
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TABLE 3 Mean S/N ratio and Delta values for MRR 
MRR’s mean S/N Ratio  

Level Tool feed rate  
(A) 

Applied Voltage 
(B) 

Electrolyte 
Concentration (C)  

1 -1.640 -2.208 -2.203 
2 -1.973 -2.211 -2.243 
3 -2.723 -1.916 -1.890 

Delta 1.083 0.295 0.353 
Rank 1 3 2 

Delta values revealed that MRR improves with the increase in both applied voltage and electrolyte concentration. It was seen 
because the formation rate of the gas film underneath the tool electrode enhances with the level increase in both voltage and 
concentration. It results in quick gas film formation. As a result, the high intensity of sparks underneath the tool electrode observes 
that further increases the thermal energy in the machining area. Hence, more MRR is obtained at a higher level of voltage and 
concentration.   

 
Fig. 3 Main effect plot of mean S/N ratio for MRR 

An increase of 0.0669 mm3/min in MRR was observed with the voltage increase from 40 V to 50 V and concentration increase from 
10 wt.% to 20 wt.%.  Figure 4 shows the individual plot of MRR concerning voltage and concentration that determines the increase 
in MRR. It was concluded that the MRR is strongly influenced by the tool feed rate (Rank 1, 1.083) trailed by the electrolyte 
concentration (Rank 2, 0.353) and applied voltage (Rank 3, 0.295). The contour plot of MRR concerning applied voltage and 
electrolyte concentration is shown in Figure 5. 

 
Fig. 4 MRR variation concerning applied voltage and electrolyte concentration 
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Fig. 5 Contour plot of MRR concerning applied voltage and electrolyte concentration  

B. Tool electrode feed effect on MRR 
Electrode feed was observed as an influential input variable for controlling the MRR. Figure 6 shows the effect of the tool electrode 
feed rate effect on MRR. It was found that MRR improves with the decrease in tool electrode feed rate since at low tool feed rate 
more interaction time occurs between electrode and work material for thermal energy transference. It causes more material to 
remove from the glass. On the contrary, a high tool feed rate causes more electrode contact with the work material and deteriorates 
the gas film formation. An improvement of 0.1397 mm3/min was observed with the decrease in tool electrode feed from 6 mm/min 
to 4 mm/min. As a result, a reduction in the MRR is observed. The combined effect of all three input variables on MRR is shown in 
Figure 7. 

 
Fig.6 MRR variation concerning tool feed rate 

 
Fig.7 MRR variation concerning input variables 
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C. ANOVA results 
ANOVA is performed to identify the contribution of the input variables as shown in Table 4. It was found that the tool feed rate 
contributes a maximum percentage (76.86) in controlling the MRR trailed by the electrolyte concentration (9.67) and applied 
voltage (8.17). 

Table 4 ANOVA results for MRR 

Source DOF Sum 
Squares 

Variance F-Value Percentage 
Contribution (%) 

Tool feed rate  2 0.01480 0.00740 14.48 76.86 
Applied Voltage 2 0.00157 0.00078 1.54 8.17 

Electrolyte 
Concentration 2 0.00186 0.00093 1.82 9.67 

Error 2 0.00102 0.00051  5.29 
Total 8 0.01926    

 
IV. CONCLUSIONS 

In this present investigation, the effect of the tool electrode feed on MRR was evaluated alongside applied voltage and electrolyte 
concentration. The experiments were performed according to Taguchi’s L9 array and analyzed using the S/N ratio. The major 
conclusions withdrawn from the study are given underneath: 
 
A. Tool electrode feed is found as the most dominant and influential input variable for controlling the MRR with a maximum 

percentage of 76.86.  
B. MRR was found to be increased with the increase in both the applied voltage and electrolyte concentration while it decreases 

with the increase in tool feed rate. 
C. The optimum combination of input variables for maximum MRR is A1B3C3. i.e., (4 mm/min, 50V, 20 wt.%), low level of tool 

electrode feed, high level of both voltage and concentration.   
D. An increase of 0.0669 mm3/min in MRR was observed with the voltage increase from 40 V to 50 V and concentration increase 

from 10 wt.% to 20 wt.%.   
E. An improvement of 0.1397 mm3/min was observed with the decrease in tool electrode feed from 6 mm/min to 4 mm/min. 
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