



IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 8 Issue: IX Month of publication: September 2020 DOI: https://doi.org/10.22214/ijraset.2020.31609

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com



# Study of Static Dielectric Constant and Relaxation Time of Brucine-Chloroform Solution using Time Domain Reflectometry

A. R. Lathi

Associate professor, A.E.S. College, Hingoli, Maharashtra, India

Abstract: The complex permittivity, static dielectric constant and relaxation time of Brucine – Chloroform solution for different concentration have been studied using time domain Reflectometry at temperature 298°K, in frequency range 10 MHz to 30 GHz. The effect of Brucine concentration in non-polar solvent chloroform on static dielectric constant ( $\varepsilon_0$ ) and relaxation time ( $\tau$ ) was studied. The static dielectric constant slightly decreases and relaxation time increases with concentration of Brucine. Index Terms: Brucine; Dielectric constant; Relaxation time; TDR.

#### I. INTRODUCTION

Brucine was discovered in 1819 by Pelletier and Caventou in the bark of Strychnos nux vomica tree. It comes under the Indole- II group of alkaloid [1]. It is a natural alkaloid. It was closely related to Strychine [2]. Brucine is large chiral molecule, it is used in chiral solution. It is also called 2-3 Dimethoxystrychnine. Brucine is used for medical use. It has anti-tumor properties [3]. It is poisonous alkaloid, hence it is also used as a pesticide. [4, 5] . Molecular formula is  $C_{23}H_{26}N_2O_4$ . It dissolves in alchohol and chloroform. It's molecular mass is 394.46 gm/Mole. As per use in medical and agricultural field, it is necessary to study in depth. In this paper, I present effect of Brucine concentration on static dielectric constant and relaxation time at temperature 298°K using time domain Reflectometry.

#### **II. EXPERIMENTAL**

#### A. Material

Brucine (2-3 Dimethoxystrychnine) was obtained from OTTO Chemie India. Considering the molecular mass and solubility of Brucine in chloroform, molar solutions 0M, 0.06M, 0.12M, 0.18M, 0.24M, 0.3M were prepared. Chloroform is non-polar solvent.

#### B. Experimental Setup

Digital serial Analyser sampling oscilloscope DSA-8200 (Tektronics), sampling TDR module 80E08 with step generator was used. Bandwidth of DSA-8200 is 50 GHz [6,7]. To maintain temperature 298°K, temperature control system was used. The Fig. 1 shows block diagram of TDR.

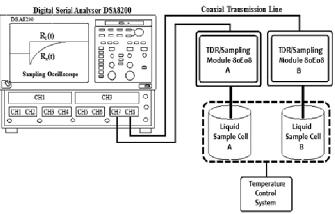



Fig. 1 Experimental setup of TDR



International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IX Sep 2020- Available at www.ijraset.com

#### C. Experimental Procedure

By maintaining temperature 298°K constant, the reflected pulse without sample  $R_1$  (t) and with sample  $R_x$  (t) were recorded in time window 5 ns and Considering the digitized in 2000 points for Brucine-chloroform solution of different concentration using TDR technique between frequency range 10 MHz to 30 GHz.

#### **III. RESULT AND DISCUSSION**

The complex coefficient  $\rho^{*}\!\left(\,\omega\right)$  over frequency range 10MHz to 30GHz determined as

$$\rho * (\omega) = -\frac{c}{j\omega dq(\omega)} - (1)$$

Where,  $p(\omega)$  and  $q(\omega)$  are Fourier Transform of time domain p(t) and q(t). If The reflected pulse without sample is  $R_1(t)$  and with sample is  $R_x(t)$ . Then,

$$p(t) = [R_1(t) - R_x(t)] -- (2)$$
  
$$h(t) = [R_1(t) + R_x(t)] -- (3)$$

 $q(t) = [R_1(t)+R_x(t)]$  $p(\omega)$  and  $q(\omega)$  in equation (1), obtained by summation and Samulon method [7, 8]

$$p(\omega) = T \sum_{n=0}^{N} \exp(-i\omega nT)p(nT)$$

The complex permittivity spectra  $\varepsilon^*(\omega)$  is obtained from reflection coefficient spectra  $\rho^*(\omega)$  by using Bilinear calibration method suggested by Cole [10-12].

Due to brucine concentration to the dielectric polarization, the dielectric spectra for brucine- chloroform solution are more complicated. The dielectric relaxation for Brucinr-Chloroform solution is described by Harilliak and Negami equation [13].

$$\varepsilon^*(\boldsymbol{\omega}) = \varepsilon_{\infty} + (\varepsilon_0 - \varepsilon_{\infty})/[1 + (j \le \tau)^{1-\alpha}]^{\beta} - (5)$$

-- (3)

Where,  $\varepsilon_0$  is static dielectric constant,  $\varepsilon_{\infty}$  is dielectric constant at high frequency,  $\tau$  is relaxatioon time,  $\alpha$  and  $\beta$  are distribution parameter.

Brucine chloroform solution for all concentration could fit Debye type dispersion [14]. Therefore  $\alpha = 0$ ,  $\beta = 1$  and experimental values  $\epsilon^*(\omega)$  were fitted to Debye equation as

By using, nonlinear square fir method, static dielectric constant  $\mathcal{E}_{U}$  an relaxation time  $\tau$  for different concentration at 298°K are determined which is as shown in Table 1.

| $298^{0}$ K |                                                                                                              |                                                                                                                                                                                                                            |
|-------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                              |                                                                                                                                                                                                                            |
| ∞ 3         | ε <sub>0</sub>                                                                                               | τ(ps)                                                                                                                                                                                                                      |
| 2 (1)       | 4.82 (1)                                                                                                     | 6.87 (4)                                                                                                                                                                                                                   |
| 2.30 (3)    | 4.41 (3)                                                                                                     | 9.12 (7)                                                                                                                                                                                                                   |
| 2.04 (5)    | 4.43 (4)                                                                                                     | 10.08 (9)                                                                                                                                                                                                                  |
| 2.03 (3)    | 4.36(3)                                                                                                      | 11.04 (7)                                                                                                                                                                                                                  |
| 2.04 (7)    | 4.34 (8)                                                                                                     | 12.28 (15)                                                                                                                                                                                                                 |
| 2.62 (1)    | 4.31 (3)                                                                                                     | 13.52 (29)                                                                                                                                                                                                                 |
|             | $\begin{array}{c} \varepsilon_{\infty} \\ 2 (1) \\ 2.30 (3) \\ 2.04 (5) \\ 2.03 (3) \\ 2.04 (7) \end{array}$ | $\begin{array}{c c} \varepsilon_{\infty} & \varepsilon_{0} \\ \hline 2 (1) & 4.82 (1) \\ \hline 2.30 (3) & 4.41 (3) \\ \hline 2.04 (5) & 4.43 (4) \\ \hline 2.03 (3) & 4.36 (3) \\ \hline 2.04 (7) & 4.34 (8) \end{array}$ |

Table 1: Dielectric relaxation parameters for solution of Brucine - chloroform at different concentration at temperature 298°K

(Note – The number in bracket indicate error, for e.g. 6.87(4) means  $6.87 \pm (0.04)$ )

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IX Sep 2020- Available at www.ijraset.com



Variation of static dielectric constant with molar concentration of Brucine at temperature 298° K is as shown in Fig. 2

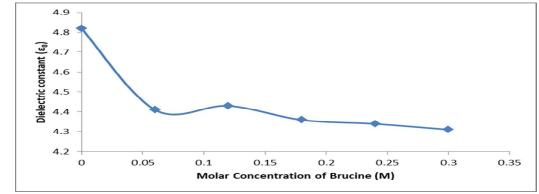
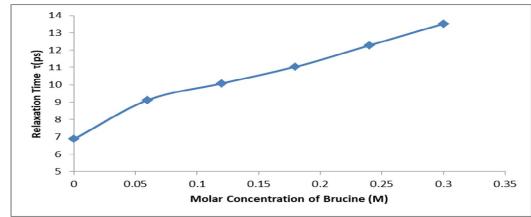




Fig.2 Variation of static dielectric constant with molar concentration of Brucine at temperature 298° K



Similarly, variation of relaxation time with molar concentration of Brucine in chloroform at 298° K is as shown in Fig.3

Fig.2 Variation of relaxation time with molar concentration of Brucine in chloroform at  $298^{\circ}$  K

## **IV. CONCLUSION**

The Dielectric constant is mainly dependent on dipole moment and number of molecules per unit volume. Static dielectric constant  $(\epsilon_0)$  decreases with increase in concentration of Brucine. The relaxation time increases with increase in concentration of Brucine.

### V. ACKNOWLEDGEMENT

Author A. R. Lathi thanks to Dr. S.K.Popalghat (J.E.S. College, Jalana) and Dr. A.C. Kumbharkhane (school of Physical Sciences Swami Ramanand Teerth, Marathwada University, Nanded).

#### REFERENCES

- [1] K.W. Bentley, The chemistry of natural products: The alkaloids Vol. 1. P-162 Interscience Publishers a division of John wiley sons, Inc, Newyork, London, Sydney.
- [2] Buckingham, J(2007). Bitter Nemesis: The intimate history of Strychnine.CRC press, p.225
- [3] Qin J., International Journal of Nanomedicine 7: 369-379 (2012)
- [4] A. Prakash and J Rao, Botanical pesticides in Agriculture, CRC Press, Boca Raton, FL, 1997. P.357
- [5] K. Dittrich, M. J. Bayer and L.A. Wanke, A case of fatal strychnine poisoning J. Emerg. Med 1 : 327-330 (1984)
- [6] Tektronix, DSA8200 Sampling Oscilloscope user's guide.
- [7] 80E08 TDR Plug in Modules user and Programmers Guide
- [8] H. A. Samulon, "Spectrum Analysis of transient response curves" Proc. IRE. 39, 175 (1951).
- [9] C. E. Shannon, "Communication in the Presence of Noise", Proc. IRE. 37, 10 (1949).
- [10] R.H. Cole, J.G. Berberian, S. Mashimo, G. Chryssikos, A. Burns and E. Tombari, J. Appl. Phys. 66(2), 793, (1989).
- [11] R.H. Fattepur, M.T. Hosamani, D.K. Deshpande, J. chem. Phys. 101(11), 9956, 1994.
- [12] A.C. Kumbharkhane, S.M. Puranik, S.C. Mehrotra, J.chem. soc. Faraday Trans. 87(10), 1569, 1991.
- [13] S. Havrialiak and S. Negami, J. Polym. Sci. C14,99,(1966).
- [14] P.Debye, Polar molecules (The chemical catalogue company, New york) (1929).











45.98



IMPACT FACTOR: 7.129







# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24\*7 Support on Whatsapp)