
 

8 IX September 2020

https://doi.org/10.22214/ijraset.2020.31745



International Journal For Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 8 Issue IX Sep 2020- Available AT www.ijraset.com 
    

 
1233 ©IJRASET: All Rights are Reserved 
 

Lindley Half Cauchy Distribution: Properties and 
Applications 

Arun Kumar Chaudhary1, Vijay Kumar2 
1Department of Management Science, Nepal Commerce Campus, Tribhuwan University,  

2Department of Mathematics and Statistics, DDU Gorakhpur University, 

Abstract: A new two-parameter Lindley half-Cauchy distribution using Lindley family of distribution is introduced. The 
mathematical and statistical properties of the new distribution such as probability density function, cumulative distribution 
function, quantiles, the measure of skewness and kurtosis are presented. The parameter of the new distribution is estimated 
using three widely used estimation methods namely maximum likelihood estimators (MLE), least-square (LSE) and Cramer-
Von-Mises (CVM) methods. By using the maximum likelihood estimate, we have constructed the asymptotic confidence interval 
for the model parameters. A real data set is taken and we have compared LHC distribution with some selected distributions 
namely weighted Lindley, Chen, Gompertz, and Lindley. It is proven empirically that the proposed distribution is more flexible 
and performs better than underling distributions. 
Keywords: Contour plot, Chen distribution, Estimation, Gompertz distribution, Half-Cauchy distribution, Lindley distribution, 
Weighted Lindley distribution. 

I. INTRODUCTION 
The statistics literature is filled with hundreds of continuous univariate distributions. Many classical distributions have been widely 
used over the past decades for modeling data in several areas such as actuarial, environmental and medical sciences, life sciences, 
demography, economics, finance, and insurance. However, in many applied sectors like survival analysis, insurance and finance, 
there is a clear necessity for modified forms of more flexible distributions to model real data that can address a high degree of 
skewness and kurtosis. 
The half-Cauchy distribution is derived from the Cauchy distribution by reflecting the curve on the origin so that only positive 
values can be detected. Since it can predict more common long-distance dispersal events, the half-Cauchy distribution has been used 
as an substitute to model dispersal distances (Shaw, 1995), as a heavy-tailed distribution. Furthermore, Paradis et al. (2002) 
implemented the half-Cauchy distribution to model ringing data on two species of tits in Ireland and Britain. Its cumulative 
distribution function (CDF) and probability density function (PDF) respectively are, 
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 Last few decades the half-Cauchy distribution has been used by many researchers as a baseline distribution. Cordeiro & Lemonte 
(2011) has introduced the beta-half-Cauchy distribution, Jacob & Jayakumar (2012) has presented the “On half-Cauchy distribution 
and process”, and Polson & Scott (2012) have made an extensive study on “On the half-Cauchy prior for a global scale parameter”. 
The Kumaraswamy-half-Cauchy distribution was introduced by (Ghosh, 2014). Alzaatreh et al. (2016) has introduced the gamma 
half-Cauchy distribution. Cordeiro et al (2017) has created the generalized odd half-Cauchy family of distributions. Hence we are 
motivated to introduce Lindley half-Cauchy distribution. 
The one parameter Lindley distribution was developed by (Lindley, 1958) in the context of Bayesian statistics, as a counterexample 
to fiducial statistics. In recent years, many studies have been focused to obtain various modified forms of the baseline distribution 
using Lindley family presented by Zografas and Balakrishnan (2009) with more flexible density and hazard rate functions. A 
detailed study on the Lindley distribution was done by (Ghitany et al., 2008). 
Consider a random variable X follows Lindley distribution with parameter θ and its probability density function (PDF) is given by 
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(1.3) 
And its cumulative distribution function (CDF) is 
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Ghitany et al. (2008a) has made some of the modifications in the literature of Lindley distribution, which is quite similar to the 
exponential distribution. Gupta and Singh (2013), used hybrid censored data to investigate the estimation of the parameters. The 
estimation of the model parameters for censored samples by (Krishna & Kumar, 2011), Reyes et al. (2019) has introduced the Slash 
Lindley-Weibull Distribution, and Hassan & Nassr (2019) has created the Power Lindley-G family of distributions. Ieren et al. 
(2020) has introduced the Odd Lindley-Rayleigh distribution and its properties and applications to simulated and real life datasets. 
The main objective of this study is to launch a new probability model by inserting only one additional parameter and hence it is 
more flexible. The rest of the article is organized as follows. In Section 2, the proposed Lindley half-Cauchy distribution is derived 
and we obtain some properties of the LHC distribution such as a reliability function, hazard rate function, quantile function, and 
skewness and kurtosis. In Section3, we introduced the different methods for estimating the model parameters namely maximum 
likelihood estimators (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) methods. The estimation of the model parameters 
for uncensored data is discussed in Section 4. Also we have compared the LHC distribution with some selected weighted Lindley, 
Chen, Gompertz, and Lindley distribution. Finally, conclusions about the proposed model are presented in Section 5. 

II. THE LINDLEY HALF CAUCHY (LHC) DISTRIBUTION 
Zografas and Balakrishnan (2009) has defined the CDF of any new modified distribution is 

   
 ln 1

0

 
G x

F x r t dt
   

    (2.1) 

Using  r t as PDF of Lindley distribution (1.3) and the baseline distribution G(x) as CDF of half-Cauchy distribution (1.1) then 

the CDF of Lindley half-Cauchy is obtained as, 
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and its corresponding PDF is obtained as, 
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The reliability/survival function of Lindley half-Cauchy distribution is 
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And its hazard rate function is 
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Figure 1 displays the plots for the PDF and hazard function of LHC distribution for numerous values of the parameters λ and θ. 

  
Figure 1. Graph of PDF (left panel) and hazard function (right panel) for different values of λ and θ. 

 
A. Quantile Function of LHC Distribution 
In statistics and probability, the quantile function, related with a probability distribution of a random variable, identifies the value of 
the random variable such that the probability of the variable being less than or equal to that value equals the given probability. It is 
also named the inverse cumulative distribution function or percent-point function. 

   1Q p F p  

Hence the quantile function can be written as, 
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The random numbers can be generated for the LHC distribution, for this let, simulating values of random variable X with the CDF 
(2.2). Let U denote a uniform random variable in (0,1), then the simulated values of X are obtained by setting, 
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and solving for x. 
 
B. Skewness and Kurtosis 
These measures are used mostly in data analysis to study the shape of the distribution or data set. Skewness and Kurtosis based on 
quantile function are 
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III. METHODS OF ESTIMATION 
In statistics, the estimation theory is an important branch which deals with estimating the values of parameters based on measured 
empirical data which has a arbitrary component. The parameters describe an underlying physical setting in such a way that their 
value affects the distribution of the measured data. An estimator tries to approximate the unknown parameters with the help of the 
measurements. Commonly used estimators (estimation methods) are listed blew,  
1) Maximum likelihood estimators (MLE) 
2) Method of moments estimators 
3) Minimum mean squared error (MMSE), also called Bayes least squared error (BLSE) 
4) Cramer-von Mises estimator (CVM) 
5) Least-squares estimators (LSE) 
6) The maximum product of spacings (MPS) method 
7) Cramér–Rao bound 
8) Bayes estimators 
9) Markov Chain Monte Carlo (MCMC) 
We have considered different estimation procedures for the unknown parameters of the LHC distribution. We introduce three types 
of estimators such as the maximum likelihood (MLE), ordinary least squares (LSE), and Cramer-von Mises (CVM) estimators. 

 
A.  Maximum Likelihood Estimation (MLE) 
In this subsection, we discuss the maximum likelihood estimators (MLE's) of the LHC distribution. 
Let x̠ = (x1,…..,xn) denote a random sample of size ‘n’ from LHC( λ, θ), then the likelihood function L( λ, θ/ x̠) can be expressed as, 
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The log-likelihood density of (3.1) is 
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Differentiating (3.2) with respect to λ and θ we get, 
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By solving equations (3.3) and (3.4) we get the estimated values of the parameters of the Lindley half-Cauchy distribution. Since is 
difficult to solve them manually but one can use computer programming to solve them numerically. Consider ( , )    denote 

the parameter space and the corresponding MLE of   as ˆ ˆˆ ( , )   , then the asymptotic normality results in, 
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where H stands for Hessian matrix. 
We are using the Newton-Raphson algorithm in order to maximize the likelihood and give the observed information matrix. 
Therefore, the variance-covariance matrix is given by, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for λ and θ can be constructed as, 
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B.  Method of Least-Square Estimation (LSE) 
The ordinary least square estimators and weighted least square estimators are established by (Swain et al., 1988) to estimate the 
parameters of Beta distributions. The least-square estimators of the unknown parameters λ and θ of the NHC distribution can be 
attained by minimizing 

 
2

1
; , ( )

1

n

i
i

iX G X
n

  


    


                                                                      
                                       (3.2.1) 

with respect to unknown parameters λ and θ. 
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with respect to λ and θ. 
To obtain the least square estimators, we have to solve the following two nonlinear equations equating to zero,  
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C.  Method of Cramer-Von-Mises (CVM) 
One of the important estimation methods is Cramér-von-Mises type minimum distance estimators, (Macdonald 1971) because it 
provides empirical evidence that the bias of the estimator is smaller than the other minimum distance estimators. The CVM 
estimators of λ and θ are attained by minimizing the function, 
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IV. APPLICATION TO A REAL DATASET 
In this part, we have demonstrated the applicability of LHC distribution using a real data set used by previous researchers. We have 
compared the LHC distribution with the weighted Lindley, Chen, Gompertz, and Lindley distribution, which are listed below, 

A. Gompertz Distribution (G) 
The probability density function of Gompertz (Murthy et al., 2003) distribution with parameters α and θ is 

   1 0 0x x
GZf x e exp e ;x , , .   


         
 

 

B. Weighted Lindley Distribution (WL) 
The WL distribution has introduced by (Ghitany et al., 2011) whose PDF is 

   
1

1( ) 1 ; 0, 0, 0.
( )

x
WLf x x x e x
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 
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
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 
 

C. Chen Distribution (C) 
The probability density function (PDF) of Chain distribution (Chen, 2000) can be expressed as  

  1 1 0 0x x
CNf x; , x e exp e ;( , ) , x

               
  
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V. LINDLEY DISTRIBUTION 
The probability density function (PDF) of Lindley distribution (Lindley, 1958) can be expressed as  

  
2

( ) 1 ; 0, 0.
1

x
LDf x x e x 


   


 

By using MLE method we estimate the parameter of each of these distributions. For the goodness of fit purpose we use negative 
log-likelihood (-LL), Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike Information 
criterion (CAIC) and Hannan-Quinn information criterion (HQIC), statistic to select the best model among selected models. The 
expressions to calculate AIC, BIC, CAIC and HQIC are listed below: 

A. ˆ2 ( ) 2AIC l k     

B.  ˆ2 ( ) logBIC l k n    

C. 
 2 1

1
k k

CAIC AIC
n k


 

 
  

D.  ˆ2 ( ) 2 log logHQIC l k n        

where k is the number of parameters and n is the size of the sample in the model under consideration.  
Further, in order to evaluate the fits of the LHC distribution with some selected distributions we have taken the Kolmogorov-
Simnorov (KS), the Anderson-Darling (W) and the Cramer-Von Mises (A2) statistic. These statistics are widely used to compare 
non-nested models and to illustrate how closely a specific CDF fits the empirical distribution of a given data set.  These statistics are 
calculated as 

1

1max ,i ii n

i iKS d d
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where  i i  ;d CDF x  the xi’s being the ordered observations. 

In this segment, we demonstrate the applicability of LHC Distribution by considering a real dataset.  The data presented below 
represents time interval between failures (in thousands of hours) of secondary reactor pumps (Suprawhardana, et.al, 1999): 
0.062, 0.070, 0.101, 0.150, 0.199, 0.273, 0.347, 0.358, 0.402, 0.491, 0.605, 0.614, 0.746, 0.954, 1.060, 1.359, 1.921, 2.160, 3.465, 
4.082, 4.992, 5.320, 6.560 
In Figure 2 we have displayed the Contour plot and the fitted CDF with empirical distribution function (EDF) (Kumar & Ligges, 
2011). 

 
Figure 2. Contour plot (left panel) and the fitted CDF with empirical distribution function (right panel). 
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We have used the log-likelihood function (3.1.2) to compute the MLE directly by using optim() function in R software (R Core 

Team, 2020). By using the maximum likelihood estimation method for the above data set, we have obtained ̂ = 0.5479 and ̂ = 
1.2766 and its corresponding Log-Likelihood value is -33.00769. In Table 1 we have presented the MLE’s with their standard errors 
(SE) and 95% confidence interval for λ and θ. 

 
Table 1 

MLE, SE and 95% confidence interval 
Parameter MLE SE 95% ACI t-value Pr(>t) 
Lambda 0.5479 0.3830 (-0.20278, 1.29858) 1.430 0.15260 

Theta 1.2766 0.4778 (0.340112, 2.213088) 2.672 0.00754 

 
Hence the Hessian variance-covariance matrix is obtained as, 

 
 ˆ

1

|

ˆ ˆ ˆvar( ) cov( , ) 0.14671 0.1653
ˆ ˆ ˆ 0.1653 0.2283cov( , ) var( )

H
  

  

                  
 

In Figure 3, the Profile log-likelihood functions of parameters λ and θ are displayed. It can be concluded that the estimated 
parameters using the MLE method are unique.  

 
Figure 3. Plots of the Profile log-likelihood functions of the parameters λ and θ 

 
The parameters are estimated by using the maximum likelihood method (MLE), ordinary least squares (LSE), and Cramer-von 
Mises (CVM) methods. For comparison, we use Negative Log-Likelihood values (−LL), the Akaike information criterion (AIC), 
Bayesian information criterion (BIC) and AICC which are defined by −2LL+2p, −2LL+plog(n), and AIC + {2p(1+p)}/(n-p-1) 
respectively, where p is the number of parameters estimated and n is the sample size. 

 
Table 2 

Estimated parameters, log-likelihood, AIC, BIC and AICC 

Method ̂  ̂  -LL AIC BIC AICC 

MLE 0.5479 1.2766 33.0077 70.01538 72.28637 70.56084 
LSE 0.3155 0.9225 33.4547 70.90936 73.18035 71.45481 
CVE 0.3765 1.0156 33.2205 70.44107 72.71205 70.98652 
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Table 3 
Log-likelihood, AIC, BIC, CAIC and HQIC of selected model 
Model -LL AIC BIC CAIC HQIC 

LHC 33.0077 70.0154 72.2864 70.6154 70.5865 
G 33.4919 70.9838 73.2548 71.5838 71.5550 

WL 33.6207 71.2414 73.5124 71.8414 71.8126 
C 33.8402 71.6804 73.9514 72.2804 72.2515 
L 35.3054 72.6108 73.7463 72.8013 72.8963 

 
In Figure 4 we have presented the P-P plot (empirical distribution function against theoretical distribution function) and Q-Q plot 
(empirical quantile against theoretical quantile). 

 
Figure 4. The graph of the P-P plot (left panel) and Q-Q plot (right panel) 

 
The histogram and the fitted density functions and the empirical CDF with estimated CDF are displayed in Figure 5, which 
compares the distribution functions for the different models with the empirical distribution function produces the same. Therefore, 
for the given data set we have found that the proposed distribution gets better fit and more reliable results than selected ones. 

 
Figure 5. The Histogram and the PDF of fitted distributions (left panel) and Empirical CDF with estimated CDF (right panel). 

We have displayed the test statistics and their corresponding p-value of competing models for a selected data set is displayed in Tabl
e 4. The result shows that the proposed model has the minimum value of the test statistic and higher p-value hence we conclude that 
the LHC is best in the prospect of goodness-of-fit. 
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Table 4. The goodness-of-fit statistics and their corresponding p-value 
Model KS(p-value) W(p-value) A2(p-value) 

LHC  0.0964(0.9692)  0.0287(0.9824)  0.2559(0.9670)  
G  0.2030(0.2620)  0.2413(0.2002)  1.3404(0.2195)  

WL  0.1606(0.5403)  0.1336(0.4462)  0.7583(0.5105)  
C  0.1364(0.7356)  0.1024(0.5774)  0.6452(0.6045)  
L  0.2441(0.1084)  0.3826(0.07960)  2.2994(0.0638)  

VI. CONCLUDING REMARKS 
We have introduced a novel lifetime model, called the Lindley half Cauchy distribution that extends the half-Cauchy distribution, 
and studied some of its general structural properties. Our expressions related to the LHC model are well manageable with the use of 
modern computer resources with analytic and numerical abilities. We have provided some mathematical treatment of the new 
distribution including expressions for the reliability function, hazard rate function, quantile function, skewness and kurtosis. The 
model parameters are estimated by using four well-known estimation methods namely maximum likelihood estimators (MLE), 
least-square (LSE) and Cramer-Von-Mises (CVM) methods. The helpfulness of the proposed model is demonstrated in an 
application to real data and also displays P-P plot and Q-Q plot for formal goodness-of-fit. We have concluded that the new model 
provides a consistently better fit than other competing models. 
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