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Abstract: Analyses of steady, two-dimensional, laminar boundary layer flow and transfer of heat over a moving wedge in 
nanofluids are carried out. Here we consider single-phase model for nanofluids in which fluid medium and solid nanoparticles are 
in thermal equilibrium and the flow will have the silmilar velocity. Three different water-based nanofluids namely Copper, 
Alumina and Titania are accounted. The outer potential flow is estimated by the power-law relation. Using similarity 
transformations the conservation of momentum and energy equations are transformed into an ordinary differential equations and 
are solved analytically in circumstances where the analytical solutions are possible and otherwise numerically by Keller box 
method. The velocity and temperature profiles for several values of pressure gradient parameter, ratio of free-stream velocity to 
boundary velocity and solid volume fraction parameter of the nanofluid are presented graphically. Our results show that there is a 
good agreement among analytical and numerical solutions. . Also, results further show that the heat transfer rate for Copper (࢛࡯) 
is higher than that of Alumina (࢒࡭૛ࡻ૜) and Titania (ࡻ࢏ࢀ૛).  
Keywords: Nanofluids, boundary layer flows, heat transfer, analytical method, Keller-box method  

I. INTRODUCTION 
Although solids are better conductors of heat than fluids, various industries like the vehicular and aviation industry, transport industry, 
hydronic systems, textile, petrochemical, paper and pulp, food and chemical processing industries use fluids as the medium for heat 
transfer in their heating and cooling systems. The thermal conductivity of fluids to transfer heat is of significant importance on all 
these applications. The presence of suspended solid particles has been found to significantly improve the thermal conductivity of 
fluids as compared to the conventional process of heat transfer in fluids. Several experiments and theories were proposed to show the 
effectiveness of thermal conductivity of fluids once solid particles are suspended in them. However, studies conducted by researchers 
at Argonne National Laboratory suggest that millimeter or micrometer sized particles cannot be used owing to the severe clogging that 
they cause. To overcome this difficulty, they suggested that the size of the particles be smaller, nano-sized particles (between 10݊݉ 
to 1݊݉). When such particles are suspended in industrial heat transfer fluids it gives rise to a new class of industrial fluids with high 
thermal conductivity. Choi [1] termed this new class of fluids as nanofluids. The more common nanofluids use water, engine oil, 
ethylene, glycol, toluene, glycerine etc. as the heat transfer fluid or base fluid and metals (݈ܣ ,ݑܥ ,݃ܣ ,ݑܣ), non-metals (݃݌ܽݎℎ݅݁ݐ, 
݅ܵ ,ܱܼ݊ ,ܱ݃ܯ ,ܱݑܥ) metal oxides ,(ݏܾ݁ݑݐ݋݊ܽ݊ ݊݋ܾݎܽܿ ଶܱ , ܱܶ݅ଶ, ݈ܣଶ ଷܱ), Carbide (ܵ݅ܥ), Nitrides (݈ܰܣ, ܵ݅ܰ) etc. the choice of 
base fluids and solid particles mixture depends on the application it is intended for. Nanoparticles are usually produced in the form of 
powders. These are either spherically or cylindrically shaped and are prepared out of several material either using physical or chemical 
processes. Physical methods comprises of grinding mechanically and inert gas condensation and chemical methods comprises of 
chemical precipitation, chemical vapor deposition, micro emulsions, spray pyrolysis and thermal spraying. 
Owing to the size of the suspended particles the nanofluids can flow through microchannels without clogging them and are expected to 
behave like molecules of fluid. These fluids, apart from having better thermal conductivity, are very stable, and have no other 
complications like sedimentation, erosion, high pressure loss, and non-Newtonian behavior. Some of their industrial and engineering 
applications include power generation, transportation, electronic and space cooling, cancer therapy etc. 
Several studies on boundary layer flows in nanofluids are available in literature: Mabood [2] obtained the analytical solution of an 
unsteady two-dimensional MHD nanofluid flow with heat and mass transfer over a heated surface, Ahmed [3] analysed nanoparticles 
in the base fluid(blood) for the axisymmetric flow of nanofluid through the artery with an axially nonsymmetric but radially symmetric 
mild stenosis, Mustafa et al. [4] derived analytic solutions for stagnation -point flow of a nanofluid past a stretching sheet, Khan and 
Pop [5] investigated the problem of laminar fluid flow from the stretching of a flat surface in a nanofluid, Nield and Kuznetsov [6] 
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studied the classical problems of natural convective boundary-layer flow of a nanofluid past a vertical plate, Ahmad et al. [7] studied 
Blasius and Sakiadis problems in nanofluids, Raman Balu [8] made an estimation of the increase in heat transfer rates by conducting a 
laminar boundary layer flow analysis over a flat plate, Yacob et al. [9] studied the steady flow and heat transfer over a static or moving 
wedge with a prescribed heat flux in a nanofluid. In the present paper we analyse the effects of different nanofluids on the 
two-dimensional boundary layer flow over a moving wedge. The wedge is considered to be moving in the nanofluid and opposite to 
the mainstream. The governing equations have been solved analytically and numerically. In the latter case, the Keller-box method has 
been utilized for the full nonlinear system, The asymptotic solution is obtained to support the numerical and analytical results. 
Rest of the paper is organized as follows. Section 2 devotes to derive the mathematical equations for momentum and heat transfer in 
the nanofluid. Section 3 presents solution procedures namely analytical, asymptotic and numerical methods. The important results 
and their discussion are explained in Section 4. The latter section concludes the important results.  

II. COMPUTATIONAL APPROACHES 
A. Problem Description 
In the literature, there are two methodologies to study the improvement of heat transfer by suspending the solid particles into the fluid 
medium. One is single-phase model in which both fluid and solid particles are in thermal equilibrium and the flow will have similar 
velocity and the other is two-phase model that takes into account of fluid and solid particles part in the process of heat transfer. Three 
different water-based nanofluids containing Copper (ݑܥ), Alumina (݈ܣଶ ଷܱ) and Titania (ܶ݅ ଶܱ) are taken into consideration. The 
Prandtl number (ܲݎ) of the base fluid(water) is 6.2 and the volumetric fraction of the nanoparticles, ߶, is from 0 to 20% (i.e. 
0 ≤ ߶ ≤ 0.2) where ߶ = 0 corresponds to the normal fluids. 
Consider a steady laminar two-dimensional boundary layer flow over a moving wedge that moves with a velocity ݑ௪(ݔ) in a 
nanofluid. The positive ݔ-coordinate is along the surface of the wedge with apex as the origin and the positive ݕ-coordinate is normal 
to the ݔ-axis in the outward direction to the fluid. Assuming that the nanofluid is viscous and incompressible, the basic steady state 
conservation equations [10] of mass, momentum and thermal energy are  

 డ௨
డ௫

+ డ௩
డ௬

= 0 (1) 

  

ݑ  డ௨
డ௫

+ ݒ డ௨
డ௬

= − ଵ
ఘ೙೑

ௗ௣
ௗ௫

+
ఓ೙೑
ఘ೙೑

డమ௨
డ௬మ

 (2) 

  

ݑ  డ்
డ௫

+ ݒ డ்
డ௬

= ௡௙ߙ
డమ்
డ௬మ

 (3) 

subject to the boundary conditions  

 
ݕ       ݐܽ  = ݑ        0 = (ݔ)௪ݑ = ଴ܷݔ௠ ݒ      , = 0,      ܶ = ௪ܶ
ݕ       ݏܽ  → ݑ        ∞ = (ݔ)௘ݑ = ܷஶݔ௠ ,   ܶ = ஶܶ

 (4) 

Also we have, the temperature of the wall [11] is assumed to have  
 ܶ = ௪ܶ = ஶܶ + ௥ݔܥ ௪ܶ       ݁ݎℎ݁ݓ             , ≫ ஶܶ 

Viscosity is negligible on the exterior surface of the boundary layer. Therefore, from Bernoulli’s theorem (2) becomes  
 − ଵ

ఘ೙೑

ௗ௣
ௗ௫

= ௘ݑ
ௗ௨೐
ௗ௫

. (5) 

Substituting (5) in (2), we get  

ݑ  డ௨
డ௫

+ ݒ డ௨
డ௬

= ௘ݑ
ௗ௨೐
ௗ௫

+
ఓ೙೑
ఘ೙೑

డమ௨
డ௬మ

. (6) 

The dynamic viscosity (Brinkman model [12]), density, thermal diffusivity and heat capacitance of nanofluids are given by  
௡௙ߤ  =

ఓ೑
(ଵିథ)మ.ఱ ௡௙ߩ   , = ௙ߩ(߶−1) + ௦ߩ߶ , 

௡௙ߙ  =
௞೙೑

(ఘ஼೛)೙೑
௡௙(௣ܥߩ)   , = ௙(௣ܥߩ)(߶−1) + ௦(௣ܥߩ)߶ . 

The effective thermal conductivity of the nanofluid is approximated by the Hamilton - Crosser model [13]  

 
௞೙೑
௞೑

=
(௞ೞାଶ௞೑)ିଶథ(௞೑ି௞ೞ)

(௞ೞାଶ௞೑)ାథ(௞೑ି௞ೞ)
 

Introducing the stream function (ݑ, (ݒ = ቀడట
డ௬

,− డట
డ௫
ቁ , the continuity equation is satisfied automatically. Using the similarity 

transformations  
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 ߰ = ටଶఔ೑௎ಮ௫೘శభ

௠ାଵ
ߟ     ,(ߟ)݂   = ට(௠ାଵ)௎ಮ௫೘శభ

ଶఔ೑
ܶ     ,ݕ   = ( ௪ܶ − ஶܶ)(ߟ)ߠ + ஶܶ 

where ߥ௙ =
ఓ೑
ఘ೑

 is the dynamic viscosity of the fluid fraction, 

݉,ܷஶ : constants. 
in (3 - 4) and (6), and simplifying, we get  
+′′′ଵ݂ܭ  ݂݂′′+ −1)ߚ ݂′ଶ) = 0 (7) 
+′′ߠଶܭ  ′ߠ݂ + ߚ)ݎ − ߠ′݂(2 = 0 (8) 

with the boundary conditions  
 ݂(0) = 0,        ݂′(0) = (∞)′݂        ߣ− = 1 (9) 
(0)ߠ  = (∞)ߠ                ,1 = 0 (10) 

where, 

 

݂ = ,(ߟ)݂ ߠ = ,(ߟ)ߠ

ଵܭ = ଵ

(ଵିథ)మ.ఱቆଵିథାథഐೞ
ഐ೑
ቇ

ଶܭ, =
ೖ೙೑
ೖ೑

௉௥ቆଵିథାథ
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ቇ
,

ߣ = − ௎బ
௎ಮ

, ݕݐ݅ܿ݋݈݁ݒ  ݕݎܽ݀݊ݑ݋ܾ  ݋ݐ  ݕݐ݅ܿ݋݈݁ݒ  ݉ܽ݁ݎݐݏ  ݁݁ݎ݂  ݂݋  ݋݅ݐܽݎ  ℎ݁ݐ  ݏ݅    

ߚ = ଶ௠
௠ାଵ

. ݎ݁ݐ݁݉ܽݎܽ݌  ݐ݊݁݅݀ܽݎ݃  ݁ݎݑݏݏ݁ݎ݌  ℎ݁ݐ  ݏ݅    

 

When ߚ = 0, the model (7) becomes the flow over a flat plate in nanofluid, ߚ > 0  and ߚ < 0  respectively corresponds to 
accelerated and decelerated flow of nanofluid. The thermophysical properties [14] of the nanofluid particles along with base 
fluid(water) are given in table 1.  

Table  1: Thermophysical properties of nanoparticles and base fluid 
 2*Physical properties   Base fluid   Nanoparticles  

  Water   Copper(ݑܥ)   Alumina(݈ܣଶ ଷܱ)  Titania(ܶ݅ ଶܱ)  
  8.9538   40   401   0.613   (ܭ݉/ܹ)݇
  997.1   8933   3970   4250   (ଷ݉/݃݇)ߩ
  686.2   765   385   4179   (ܭ݃݇/ܬ)௣ܥ

  
III. SOLUTION METHODOLOGY 

The problem has been solved using the analytical [15], asymptotic and numerical methods and the results are discussed below.  

A. Analytical Method 
Taking ߚ = −1 in (7) and integrating twice, we get a Ricatti type of equation  

+′ଵ݂ܭ  ଵ
ଶ
݂ଶ = ଵ

ଶ
ଶߟ ߟߜଵܭ+ −  (11) ߟଵܭ

 where ߜ = ݂′′(0). The solution to (11) subject to (9) is given by  

(ߟ)݂  = ߟ + ߜଵܭ −
௄భఋ௘

ష భ
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మశ಼భഃആ)

ଵିഃమට
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మ ௘

಼భഃమ
మ ൭ ௘௥௙ ቆആశ಼భഃ

ඥమ಼భ
ቇି ௘௥௙ ቆට಼భమ ఋቇ൱

 (12) 

 provided ߜଶ = ିଶ(ଵାఒ)
௄భ

. Rewriting the solution (12) as  

(ߟ)݂  = ߟ + ߜଵܭ −
௄భఋ
ீ(ఎ)

 (13) 

 where  

(ߟ)ܩ  = ݁
భ
಼భ

(భమఎ
మା௄భఋఎ) − ఋ

ଶ
ටగ௄భ

ଶ
݁

భ
మ಼భ

(ఎା௄భఋ)మ ൭ ݂݁ݎ ൬ఎା௄భఋ
ඥଶ௄భ

൰ − ቆට௄భ ݂ݎ݁ 
ଶ
 ቇ൱. (14)ߜ

Substituting (13) in (7), we get  
′′′ܩଶܩ)ଵܭ − ′′ܩ′ܩܩ6 + (ଷ′ܩ6 + ߟ) + ′′ܩଶܩ)(ߜଵܭ − −(ଶ′ܩܩ2 +′ܩଶܩߚ2 −2)ߜଵܭ ଶ′ܩ(ߚ ′′ܩܩߜଵܭ− = 0 (15) 
 the boundary conditions (9) become  
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(0)ܩ  = (0)′ܩ   ,1 = ఋ
ଶ

(∞)′ܩ   , = 0. (16) 
 Motivated by the series representation of the solution (14) for ߚ = −1, we write the solution of the form  

(ߟ)ܩ  = ∑  ஶ
௡ୀ଴ ܽ௡ߟ௡ (17) 

 for general ߚ and ߶. Substituting (17) in (15) and equating the coefficients of ߟ௡ to zero we get  

 

ܽ଴ = 1,   ܽଵ = ఋ
ଶ

,   ܽଷ = ఋ
ଶସ
ቀସఉ
௄భ

+ (−3 + ଶߜ(ߚ + 24ܽଶቁ ,

ܽସ = ଵ
ଽ଺௄భ

−ଶ(2ߜ) ଶߜଵܭ5 + 6)ߚ2 + ((ଶߜଵܭ + 4(−2 + ଶߜଵܭ5 + 2)ߚ2 ଶ))ܽଶߜଵܭ+ + ,(ଵܽଶଶܭ96

ܽହ = ఋ
ସ଼଴௄భమ

ଶ(5ߜଵܭ2) + (ଶߜଵܭ2 + 8)ߚ + ଶߜଵܭ6 + −(ସߜଵଶܭ 4)ߚ2 + ଶߜଵܭ3 + (ସߜଵଶܭ2

−ଵ(−10ܭ4+ ଶߜଵܭ33 + 15)ߚ4 + ଶ))ܽଶߜଵܭ4 + ଵଶ(22ܭ32 + (ଶଶܽ(ߚ

 

 and in general  
 ܽ௡ାଷ = ିଵ

௄భ(௡ାଷ)(௡ାଶ)(௡ାଵ)
∑ߜଵܭ−)  ௡

௜ୀ଴ (݅ + 1)((݅ + 2)ܽ௡ି௜ܽ௜ାଶ 

ߚ)+  − 2)(݊ − ݅ + 1)ܽ௡ି௜ାଵܽ௜ାଵ) + ∑  ௡ିଵ
௝ୀ଴ (∑  ௡ି௝

௜ୀ଴ ݆)ଵܭ + 3)(݆ + 2)(݆ + 1)ܽ௡ି௝ି௜ܽ௜ ௝ܽାଷ 

 +∑  ௡ିଵି௝
௜ୀ଴ (݆ + 1)((݆ + 2)ܽ௜ ௝ܽାଶ − 2(݅ + 1)ܽ௜ାଵ ௝ܽାଵ)ܽ௡ିଵି௝ି௜) 

 +∑  ௡
௝ୀ଴ ∑  ௡ି௝

௜ୀ଴ (݆ + ݆)ଵܭ6−)(1 + 2)(݅ + 1)ܽ௡ି௝ି௜ܽ௜ାଵ ௝ܽାଶ 
݅)ଵܭ6+  + 1)(݊ − ݆ − ݅ + 1)ܽ௡ି௝ି௜ାଵܽ௜ାଵ ௝ܽାଵ ݆)ߜଵܭ+ + 2)ܽ௡ି௝ି௜ܽ௜ ௝ܽାଶ 
݅)ߜଵܭ2−  + 1)ܽ௡ି௝ି௜ܽ௜ାଵ ௝ܽାଵ − ௡ି௝ି௜ܽ௜ܽߚ2 ௝ܽାଵ)), 
 ݊ = 1,2,3. .. (18) 

 where the coefficients ܽ௡ have been expressed in terms of ܽଶ which itself is related to ݂′′(0) by  

 ܽଶ =
௙ᇱᇱ(଴)ା಼భഃ

య
మ

ଶ௄భఋ
. (19) 

 The coefficients ܽ௡ consist of two arbitrary constants ݂′′(0) and ߜ. We match the series (17) with the series form of the exact 

solution (14) for ߚ = −1. This gives ߜ = ටିଶ(ଵାఒ)
௄భ

. The other constants ܽଶ or ݂′′(0) remains to be determined. Therefore, we have 

infinite solutions of (7) and (9) in the form of (13). Further we evaluate ݂′′(0) by integrating (7) with respect to ߟ between the limits 
0 and ∞  

 ∫  ஶ
଴ (݂′ − ݂′ଶ + −1)ߚ ݂′ଶ))݀ߟ =  ଵ݂′′(0). (20)ܭ

 We have ݂′′(0) in the series form of ݂′. To obtain the numerical value of ݂′′(0), we iterate (20) for different values of ߶, ߚ and ߣ. 
݂′′(0) obtained from (20) as well as numerical values are in well agreement.  

B. Asymptotic Method 
We analyse the far-field behavior of (7) asymptotically. Thus, it is enough to examine the large ߟ behavior i.e. as ߟ → −(ߟ)′݂| ,∞
1| ≪ 1 since the derivative boundary condition ݂′(ߟ) turns out to be linear as ߟ increases away from zero. This facilitates us to 
define a new function  

(ߟ)݂  ∽ ߟ  (21) (ߟ)ܪ+
where (ߟ)ܪ and its derivatives are assumed to be small. Substituting (21) with ݂′(ߟ) = 1 + (ߟ)′ܪ = 1 + (ߟ)′′݂ ,(ߟ)ܧ = (ߟ)′′ܪ =
(ߟ)′′′݂ and (ߟ)′ܧ = (ߟ)′′′ܪ =   into (7) with the boundary conditions (9) and linearizing the obtained equation, we have (ߟ)′′ܧ

′′ܧ  + ଵ
௄భ
′ܧߟ − ଶఉ

௄భ
ܧ = 0 (22) 

and boundary conditions take the form  
(0)ܧ  = −(1 + (∞)ܧ                   ,(ߣ = 0. (23) 

Solution to (22) is given by  

(ߟ)ܧ  = (1 + ,ߚ−൭−ℳቀ(ߣ ଵ
ଶ

,− ଵ
ଶ௄భ

+ଶቁߟ ට ଶ
௄భ

୻(ଵାఉ)

୻(భమାఉ)
ℳߟ ቀଵ

ଶ
− ,ߚ ଷ

ଶ
,− ଵ

ଶ௄భ
 ଶቁ൱. (24)ߟ

In terms of ݂(ߟ), the solution is given by  
(ߟ)′݂  = 1 (ߟ)′ܪ+ = 1 +  (25) .(ߟ)ܧ
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C. Numerical Method 
The equations (7 - 8) can be written in the form of system of first order ordinary differential equations as:  

 

݂′ = ݃
݃′ = ݍ
′ߠ = ݏ
′ݍ = ଵ

௄భ
ଶ݃ߚ) − ߚ − (ݍ݂

′ݏ = ଵ
௄మ

−2)ݎ) ߠ ݃(ߚ − (ݏ݂

 (26) 

and boundary conditions take the form  
 ݂(0) = 0,      ݃(0) = (0)ߠ      ,ߣ− = 1 
 ݃(∞) = (∞)ߠ         ,1 = 0. (27) 

 We use backward finite-difference to the system (26 - ??), and hence we get  

 

௝݂ − ௝݂ିଵ = ௛
ଶ

(݃௝ + ݃௝ିଵ)

݃௝ − ݃௝ିଵ = ௛
ଶ

௝ݍ) + (௝ିଵݍ

௝ߠ − ௝ିଵߠ = ௛
ଶ

௝ݏ) + (௝ିଵݏ

௝ݍ − ௝ିଵݍ = ௛
ଶ௄భ

ቀఉ
ଶ

(݃௝ + ݃௝ିଵ)ଶ − ߚ2 − ଵ
ଶ

( ௝݂ + ௝݂ିଵ)(ݍ௝ + ௝ିଵ)ቁݍ

௝ݏ − ௝ିଵݏ = ௛
ଶ௄మ

ቀ௥(ଶିఉ)
ଶ

(݃௝ + ݃௝ିଵ)(ߠ௝ + −(௝ିଵߠ ߚ2 − ଵ
ଶ

( ௝݂ + ௝݂ିଵ)(ݏ௝ + ௝ିଵ)ቁݏ .

 (28) 

The above system (28) is nonlinear algebraic equations. In order to linearize the system we define  
 ௝ܽ

(௞ାଵ) = ௝ܽ
(௞) + Δ ௝ܽ

(௞) (29) 
where ܽ = [݂ ݃ ݍ ߠ  Substituting (29) in the system (28), we get the system of linear algebraic equations which can be .⊺[ݏ
conveniently written in the matrix form as  

ܦܣ  = ܴ 
where ܣ is a block tridiagonal matrix and their elements are again a matrix of order 5, 
଴ݍΔ]= ܦ Δݏ଴ Δ ଵ݂ Δݍଵ Δݏଵ …Δ݃ேିଵ Δߠேିଵ Δ ே݂ Δݍே Δݏே]⊺, 
ܴ = [ܴଵ ܴଶ …ܴே]⊺. The tridiagonal matrix is given by  

 

⎣
⎢
⎢
⎢
⎡
[ଵܣ] [ଵܥ] 0 … …

[ଶܣ] [ଶܥ] 0 …
0 … … … …
0 … [ேିଵܤ] [ேିଵܣ] [ேିଵܥ]
0 … … [ேܤ] [ேܣ] ⎦

⎥
⎥
⎥
⎤

  

where  

 = ଵܣ 

⎣
⎢
⎢
⎢
⎡
0 0 −݀ 0 0
݀ 0 0 −݀ 0
0 −݀ 0 0 −݀
ܿଶ 0 ܿଷ ܿଵ 0
0 ݇ଶ ݇଻ 0 ݇ଵ ⎦

⎥
⎥
⎥
⎤

 = ௝ܣ ,

⎣
⎢
⎢
⎢
⎡
−݀ 0 1 0 0
−1 0 0 −݀ 0
0 −1 0 0 −݀
ܿ଺ 0 ܿଷ ܿଵ 0
݇଺ ݇ସ ݇଻ 0 ݇ଵ ⎦

⎥
⎥
⎥
⎤

, 

 

 = ௝ܤ

⎣
⎢
⎢
⎢
⎡
0 0 −1 0 0
0 0 0 −݀ 0
0 0 0 0 −݀
0 0 ܿସ ܿଶ 0
0 0 ଼݇ 0 ݇ଶ ⎦

⎥
⎥
⎥
⎤

 = ௝ିଵܥ ,

⎣
⎢
⎢
⎢
⎡
−݀ 0 0 0 0
1 0 0 0 0
0 1 0 0 0
ܿହ 0 0 0 0
݇ହ ݇ଷ 0 0 0⎦

⎥
⎥
⎥
⎤

 

 
where ݆ = 2,3,4, …. The tridiagonal matrix can be solved by LUD method. The other details can be found in Keller [16], Cebeci and 
Bradshaw [17].  
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IV.   RESULTS AND DISCUSSION 

 
Figure  1: Velocity profiles of a Newtonian fluid for accelerated flow ߚ = 1. 

 

  
Figure  2: Velocity profiles of a ݑܥ  .nanofluid ݎ݁ݐܽݓ−

 
(a)Newtonianfluid                                                        (b)Nanofluid 

Figure  3: Velocity profiles for different ߚ. 
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Figure  4: Velocity and temperature profiles for different nanofluids. 

   

 
Figure  5: Velocity and temperature profiles for different ߶. 

 

 
(a)Newtonianfluid                                                        (b)Nanofluid  

Figure  6: Temperature profiles for different ݎ. 
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   Figure  7: Skin-friction profiles of a nanofluid for different nanoparticles. 

 

 
Figure  8: Temperature gradient profiles of a nanofluid for different ݎ. 

The present paper discusses two-dimensional boundary layer flow over a moving wedge in a nanofluid using single-phase model. 
Three types of nanofluids are used to discuss the nature of heat transfer in the boundary layer. The base fluid is taken to be the water 
and the different nanoparticles considered are Copper (ݑܥ), Alumina (݈ܣଶ ଷܱ) and Titania (ܶ݅ ଶܱ) in various measures. We note that the 
Prandtl number (ܲݎ) is merged in the constant ܭଶ for convenience. We have employed three types of solutions: first, the results have 
been obtained in the circumstances where exact solution is possible. In this case, the known exact solution for ߚ = −1 is modified to 
obtain the solution for other values of ߚ ≠ 1. Secondly, the full nonlinear fluid interaction problem is solved using the Keller-box 
method. Finally, to support the exact and numerical solutions, we have performed the asymptotics in the limit of large ߟ in which the 
linearized ordinary differential equation has been solved in terms of the confluent hypergeometric functions. We note that obtained 
results from all three approaches are in excellent agreement with each other. All the results for the velocity profiles ݂′(ߟ), temperature 
profiles (ߟ)ߠ, wall shear stress ݂′′(0), temperature gradient (0)′ߠ are presented for various physical parameters and are given in 
figures. 
Figures 1 and 2 compare the results obtained by exact, numerical and asymptotic methods in terms of the velocity profiles ݂′(ߟ) for 
Newtonian fluid and nanofluid respectively. These profiles are plotted for Copper (ݑܥ) nanoparticles. It is immediately clear that 
results agree well to each other, and all velocity shapes approach the mainstream flow asymptotically. These are tested for different ߚ, 
 .and ߶, and found no visible difference in the solution procedure ߣ
We now study the effects of pressure gradient on the boundary layer for Newtonian and Titania (ܶ݅ ଶܱ ) nanofluid, and the 
corresponding results are presented in figure 3. Results are obtained from the exact solutions for various ߚ values. Here ߶ = 0 
corresponds to the real fluid. We note immediately that the velocity curves are benign in nature and decay into the mainstream flows. 
The velocity shapes for the nanofluid are found to have thinner boundary layer than the real fluid shapes which is clearly seen in the 
figure. It is further noticed that for increasing pressure gradient, the thickness of the boundary layer for Titania (ܶ݅ ଶܱ) nanofluid is 
found to be decreasing. This is due to non-zero values of nanoparticle volume fraction parameter (߶) decreases the thickness of the 
boundary layer. 
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The effects of different nanofluids on the boundary layer flow over a moving wedge are shown in figure 4 in terms of the velocity and 
temperature profiles. We have used the full numerical Keller-box method for their simulations, since exact and asymptotic solutions 
are obtained for momentum equation but not for temperature equation. We, therefore have given ݂′(ߟ) and (ߟ)ߠ  using the 
Keller-box method. Further we observe that, the boundary layer thickness is smaller for Copper (ݑܥ) than those of Alumina (݈ܣଶ ଷܱ) 
and Titania (ܱܶ݅ଶ) whereas the thermal boundary layer is found opposite. Thermal conductivity of the nanofluid enhances the thermal 
boundary layer. ݑܥ − ଶ݈ܣ nanofluid has more thermal conductivity when compared to ݎ݁ݐܽݓ ଷܱ ݅ܶ and ݎ݁ݐܽݓ− ଶܱ −  ݎ݁ݐܽݓ
nanofluids. 
From figure 5, it is clear that the boundary layer thickness decreases for increasing ߶ (solid volume fraction of a nanoparticle) in 
which for ߶ = 0.2 the fluid particles are attached to the wedge surface. Since, the accelerated pressure gradient ߚ = 1, it has further 
a thinning effect on the flow, whereas the temperature profiles show that the heat transfer rate is more for higher values of ߶ 
compared to the case of real fluid. The effect of increasing values of nanoparticle volume fraction parameter (߶) is to decrease the 
velocity profile which indicates thinning of the boundary layer. 
Figure 6(a) discusses the temperature profile for a real fluid as a function of the parameter ݎ that signifies wall temperature for a fixed 
value of (1.5=)ߣ and (1.0=)ߚ. While the behavior is the same for various values of ݎ, the higher the wall temperature the thinner is the 
thermal boundary layer. Figure 6(b) discusses the temperature profile for a nanofluid (߶ = 0.2) as a function of ݎ for a fixed value of 
 the higher the wall temperature, the thinner is the thermal boundary ,ݎ Again the behavior is the same for various values of .ߚ and ߣ
layer. But as compared to the real fluid, the thermal boundary layer is thicker in this case indicating the role of nanoparticles in 
dissipating the heat in thermal boundary layer. 
Figure 7 shows the dependence of skin-friction as a function of nanoparticle concentration (߶). The value of skin-friction coincides for 
all the three cases for a real fluid. However, as ߶ increases the behavior changes in the case of Copper in that skin-friction reduces 
with increasing ߶. However ݈ܣଶ ଷܱ  and ܱܶ݅ଶ donot show this behavior. Figure 8 shows the temperature gradient for various values 
of wall temperature parameter ݎ. It can be seen that temperature gradient increases with increase in nanoparticle concentration 
supporting the observation that thermal boundary layer is thicker in case of nanofluids.  

V. CONCLUSIONS 
Analyses of a two-dimensional boundary layer flow and heat transfer of a nanofluid over a wedge are studied using a single-phase 
model. The governing nonlinear partial differential equations have been transformed into nonlinear ordinary differential equations 
using similarity transformations. The resulting equations are solved using numerical, analytical and asymptotic methods. The velocity 
and temperature profiles for various values of pressure gradient parameter ߚ, stretching parameter ߣ for both real and nanofluids are 
shown. While the velocity profiles do not show a significant change, the temperature is affected by the presence of the nanoparticles. 
The thermal boundary layer is thicker in the nanofluid showing the mixing of heat and heat transfer. The temperature gradient 
increases with increasing values of ߶. Also, there is a reduction in the skin-friction in the presence of nanoparticles.  

Nomenclature 
 (ݏ/݉)Velocity components  ݒ,ݑ 
,ݔ  (݉)Cartesian coordinates  ݕ
ܶ  Temperature( ∘C) 
 (ܽܲ)Pressure  ݌
݇  Thermal conductivity(ܹ/݉.ܭ) 
 (ݏ/݉)velocity of the wall  (ݔ)௪ݑ
 (ݏ/݉)Free stream velocity  (ݔ)௘ݑ
௪ܶ  Temperature of the wall( ∘C) 
ஶܶ  Temperature of the free stream 

fluid( ∘C) 
 (ଵିܭ.ଵି݃݇.ܬ)௣  Specific heatܥ
 Positive constant  ܥ
 Wall temperature parameter  ݎ
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Greek Symbols 
.ܰ)dynamic viscosity  ߤ  (ଶ݉/ݏ
 density(݇݃/݉ଷ)  ߩ
 (ݏ/ଶ݉)thermal diffusivity  ߙ
߶  Solid volume fraction parameter 

of the nanofluid 
 

Subscripts 
 ݂݊  Nanofluid 
݂  fluid fraction 
 solid fraction  ݏ

 
REFERENCES 

[1] Choi SUS, and Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Development and Applications of Non-Newtonian Flows. ASME. 
1995;231.  

[2] Mabood F, Khan WA. Analytical study for unsteady nanofluid MHD Flow impinging on heated stretching sheet. J Molecular Liquids. 2016;219:216-223.  
[3] Ahmed A, Nadeem S. The study of ( Cu, TiOଶ, AlଶOଷ ) nanoparticles as antimicrobials of blood flow through diseased arteries. J Molecular Liquids. 

2016;216:615-623.  
[4] Mustafa M, Khan JA, Hayat T, Alsaedi A. Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet. Int J 

Non-Linear Mechanics. 2015.  
[5] Khan WA, Pop I, Boundary layer flow of a nanofluid past a stretching sheet. Int J of Heat and Mass Transfer. 2010;53: 2477-2483.  
[6] Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Thermal Sciences. 2010:49:243-247.  
[7] Ahmad S, Rohni AM, Pop I. Blasius and Sakiadis problems in nanofluids. Acta Mech. 2011;218:195-204.  
[8] Arool S, Fahad M, Balu R. Evaluation of heat transfer enhancement of nanofluids through boundary layer flow analysis. KETCON - 2016 conference.  
[9] Yacob NA, Ishak A, Nazar R, Pop I. Falkner-Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid. Int Commun Heat and 

Mass Transfer. 2011;38:149-153.  
[10] Yuan SW. Foundations of Fluid Mechanics. PHI Priv. Limited London.1976.  
[11] Chandrasekar M, Kasiviswanathan MS. Analysis of heat and mass transfer on MHD flow of a nanofluid past a stretching sheet. Int Conference on Computational 

Heat and Mass Transfer 2015.  
[12] Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chemical Physics. 1952;20:571.  
[13] Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems, Division of Industrial and Engineering Chemistry.1962;187-191.  
[14] Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat and Fluid Flow. 

2008;29:1326-1336.  
[15] Sachdev PL, Kudenatti RB, Bujurke NM. Exact analytic solution of a boundary value problem for the Falknerâ€“Skan equation. Studies in Applied Mathematics. 

2008;120:1-16.  
[16] Keller HB. A new difference scheme for parabolic problems in numerical solutions of partial differential equations. Academic press, New York. 1970;369-377.  
[17] Cebeci T and Bradshaw P. Momentum transfer in boundary layers, Mc. Graw Hill New York.1977.  

  



 


