

8 XI November 2020

https://doi.org/10.22214/ijraset.2020.32105

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue XI Nov 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 882

Automation Pipeline and Build Infrastructure
using DevOps

P. Maragathavalli1, M. Seshankkumar2
1, 2Department of Information Technology, Pondicherry Engineering College, Puducherry, India.

Abstract: A complex project involves complex development effort and it involves more manual work and more time. It is very
difficult to reduce the time involved. In the development cycle the use of the concurrent engineering concept only increases the
problem by increasing the number of people and department involved at any point in the development effort. DevOps techniques
can be used in these projects to control the use of project elements. Using DevOps Technique many companies involved in
complex projects are able to reduce both development time and manual work involved in projects.
This project solves issues that arise due to manual work on a project that involve more than one member in a team. The usual
way of building a project in which code are distributed among team members leads to many issues like integration and
compatible problems. The existing version control system gives us integration but that need to be tuned for more effective way of
using that tool. This project builds an automation system that handles all the integration and deployment phrases automatically.
This also reduces the time of compilation of huge codes. Manager need not wait for the results from team members since the
results are stored automatically in Git.
Keywords: DevOps, Git Hub, CICD pipeline, YML.

I. INTRODUCTION
The main purpose of this project is to automate the development process of a project that includes the phrases of building the code,
testing and deployment of the project which need more time when doing these tasks manually. Eight builds are involved which
would take a huge time if done manually. The existing version control system does the three phrases separately which takes more
time and work. It is a lengthy process that needs more space and time. The continuous integration and deployment were required
that will be presented by this project. This project uses DevOps which helps in Continuous Integration and Continuous Deployment
of the distributed code that are required at the single phrase for building, testing and deploying the project. The main of this project
is designing of an application automation system using the technologies DevOps and CICD pipeline through GitLab. The CICD
means continuous integration and continuous deployment.

A. Objective
Main objective of the proposed work is,
1) To provides an application automation (issues tracking, fixing, regression) system.
2) To provide a system does the process of building, testing and deploying in the continuous pipeline manner.
3) To build an application that handles complete control over a centralized code with many developers.
4) To reduce the time of builds since many changes will come in a day in organization all these changes need separate builds.
5) To spot the error in a particular build and find the developer responsible for the error.
6) To sport the warnings count in each build.

II. LITERATURE SURVEY
This section discusses the methodologies learnt from previous works for our system.

A. Concurrent versions system (CVS)
CONCURRENT VERSIONS SYSTEM also known as Computer Vision Syndrome is a version control system, a vital part of
Source Configuration Management (SCM). Utilizing it, developer can record the historical backdrop of sources documents, and
reports. It fills a comparable job to the free programming RCS, PRCS, and Aegis bundles. CVS is a generation quality framework in
wide use the world over, including many free programming tasks. It additionally lets to share various adaptations of records in a
typical vault between group of engineers. CVS monitors numerous duplicates of source code documents and furthermore keep up a
solitary duplicate and all the progressions are recorded.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue XI Nov 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 883

Every designer's work independently in a different working index and CVS monitors all engineer's work. Crafted by a group of
designers can be converged in a typical vault when wanted. Submit order is utilized to blend the changes.
CVS utilizes Client–Server engineering: a worker stores the current version(s) of an undertaking and its set of experiences, and
customers interface with the worker so as to "look at" a total duplicate of the task, chip away at this duplicate and afterward "check
in" their changes. CVS is arranged towards text records.CVS is oriented towards text files. In cross-platform development, It is very
easy to mess up the management of binary files (e.g., graphics such as icons). It is a bit difficult to learn about the myriad of
configuration files that control CVS's behaviour. The official manual (by Per Cederqvist) is a bit out of date. It can run scripts which
you can supply to log CVS operations or enforce site-specific polices.

B. Highlights of CVS
1) Client/worker CVS empowers engineers dispersed by geology or moderate modems to work as a solitary team.The adaptation

history is put away on a solitary focal worker and the customer machines have a duplicate of the apparent multitude of
documents that the designers are working on. Therefore, the organization between the customer and the worker must be up to
perform CVS tasks, (for example, registration or updates) however need not be up to alter or control the current renditions of
the files. Clients can play out in no way different activities which are accessible locally.

2) In situations where a few engineers or groups need to each keep up their own form of the records, on account of topography and
additionally strategy, CVS's seller branches can import a variant from another group (regardless of whether they don't utilize
CVS), and afterward CVS can mergethe changes from the merchant branch with the most recent records if that is what is
wanted.

3) Open checkouts, permitting more than one engineer to chip away at similar records at a similar time.CVS gives an adaptable
modules information base that gives an emblematic planning of names to segments of a bigger programming dispersion. It
applies names to accumulations of indexes and documents. A solitary order can control the whole collection.

4) CVS workers run on most Unix variations, and customers for Windows NT/95, OS/2 and VMS are additionally accessible.
CVS will likewise work in what is here and there called worker mode against nearby archives on Windows 95/NT

III. PROPOSED SYSTEM
In request to beat downsides, for example, time, manual work and space gives needs to change to the advanced most recent
philosophy like DevOps and Agile in computerization measure so as to get a proficient framework. 9DevOps is a product
improvement approach which includes ceaseless turn of events, constant testing, persistent mix, consistent organization, and
nonstop checking of the product all through its advancement lifecycle.
A persistent incorporation and sending pipeline (CD/CI) are such a significant part of a product venture. It spares a huge load of
manual, blunder inclined arrangement work. It results in higher quality software for continuous integration, automated tests, and
code metrics.
Auto DevOps plans to improve the arrangement and execution of a mature&modern programming advancement lifecycle. Highlight
rich: Git archive the board, code audits, issue following, action takes care of and wikis. Relapse testing is the way toward testing
changes to PC projects to ensure that the more seasoned programming actually works with the new changes. Regression testing is
re-running practical and non-utilitarian tests to guarantee that recently created and tried programming actually performs after a
change. To lessen the exertion needed to finish the test robotization measure.

A. Steps involved in proposed system:
The system that is proposed has following steps for automation :
1) Configure the yml in GitLab according to developers need.
2) Make the GitLab for storing code and make it a centralized repository.
3) Construct the CICD pipeline for building, testing and deployment of the code across the developers.
4) Push the modified code to the pipeline.
5) Build the test suite for regression testing.
6) Let’s initiate the system to do different phrases.
7) As per the report do the improvement process

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue XI Nov 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 884

IV. MODULES DESCRIPTION
The various modules involved in the work are

1) CICD Pipeline Configuration
a) Build Phase
b) Test Phase
c) Deploy Phase
2) Regression Testing Automation CICD Pipeline Configuration: The pipeline needs to be configured as per the requirement of

the developer using the yml configuration file. Then the complete flow of the phases needs to be designed and configured.
Complete automation process is depending upon the CICD pipeline construction.

Figure 4.1 CICD pipeline

a) Version Control: Version control is a system that records changes to a file or set of files over time so that you can recall specific
versions later. Client will utilize programming source code as the records being variant controlled, however truly it can do this
with almost any kind of document on a PC.

b) Build Phase: The IDE compiles the source files and generates the packaged build output, such as a JAR file or WAR file. User
can build a project and all of its required projects, or build any project individually. User does not need to build the project or
compile individual classes to run the project in the IDE.

c) Test Phase: Software testing is an investigation conducted to provide stakeholders with information about the quality of the
software product or service under test.

d) Deploy Phase: Software deployment is all of the activities that make a software system available for use. The general
deployment process consists of several interrelated activities with possible transitions between them. These activities can occur
at the producer side or at the consumer side or both.

A. Regression Test Automation
The Regression tool uses the test Suite for each feature in the code. Each Suite consists of many test cases which will check the
different functionalities. Each test case consists of input, output, expected output and test case order file. Testing starts by test Suite
Init file which make use of test case order file for order of execution. Regression testing is re-running useful and non-utilitarian tests
to guarantee that recently created and tried programming still performs after a change. If not, that would be known as a relapse.
Changes that may require relapse testing incorporate bug fixes, programming improvements, setup changes, and even substitution of
electronic segments. As relapse test suites will in general develop with each discovered deformity, test robotization is much of the
time included. Once in a while a change sway examination is performed to decide a proper subset of tests. As programming is
refreshed or changed, or reused on an adjusted target, rise of new blames as well as re-development of old flaws is very normal.
Some of the time re-rise happens on the grounds that a fix gets lost through poor amendment control practices (or basic human
mistake in modification control). Regularly, a fix for an issue will be "delicate" in that it fixes the issue in the tight situation where it
was first watched however not in increasingly broad cases which may emerge over the lifetime of the product. Much of the time, a
fix for an issue in one zone accidentally causes a product bug in another region. At long last, it might happen that, when some
element is overhauled, a portion of similar slip-ups that were made in the first execution of the component are made in the update.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue XI Nov 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 885

V. RESULTS

Figure 5.1 YML configuration file

The Figure 5.1 shows the YML configuration file which has the order of build and test to be executed and the script to be executed
for a particular build or test.

Figure 5.2 Single phrase build

Figure 5.3 Double phrase build and testing

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 8 Issue XI Nov 2020- Available at www.ijraset.com

©IJRASET: All Rights are Reserved 886

Figure 6.4 shows the Three phrases build, test and deploy

VI. CONCLUSION

In the existing system, the developer need to manually do the process of building, testing and deployment which consumes more
time and even if user use scripts to do these process user can’t stop while execution but if user use these automation system, the
developer do these process in a pipeline manner and get the report periodically even if any phase got error the system don’t move to
next phase. It helps the developer to track the issues and fix it easier. In future this work can be further improved with the help of
different phrases to be added to the existing system that can further improve the time and space issues. This work can be further
extended for list of projects also. Along with this project some special phrases like system testing also can be added.

REFERENCES
[1] Vidroha Debroy, Senecca Miller, “Overcoming Challenges with Continuous Integration and Deployment Pipelines When Moving from Monolithic Apps to

Microservices”, IEEE Software, IEEE, ISSN: 2169-3536, Vol. 37, Issue: 3, Feb 2020, pp.21-29.
[2] Keheliya Gallaba, “Improving the Robustness and Efficiency of Continuous Integration and Deployment”, 2019 IEEE International Conference on Software

Maintenance and Evolution (ICSME), IEEE, ISSN: 2576-3148, Vol. 10, Dec 2019, pp.619 - 623.
[3] Ana Filipa Nogueira, Jos´e C. B. Ribeiro, M´ario A. Zenha-Rela, Antoine Craske, “Improving La Redoute’s CI/CD pipeline and DevOps processes by applying

Machine Learning techniques”, 2018 International Conference on the Quality of Information and Communications Technology, IEEE, ISBN: 978-1-5386-
5841-3, Vol. 96, Dec 2018, pp.282 - 286.

[4] Mohammed Shamsul Arefeen, Michael Schiller, “Continuous Integration Using Gitlab”, URNCST Journal, Vol. 3, Issue: 8, Nov 2019, pp.40-45.
[5] Alexander Poth, Mark Werner, and Xinyan Lei, “How to Deliver Faster with CI/CD IntegratedTesting Services?”, European Conference on Software Process

Improvement, Springer, ISBN: 978-3-319-97924-0, Vol. 896, Aug 2018, pp.401 – 409.

Author Biography
Dr. P. Maragathavalli

 She received her B.E degree in CSE from Bharathidasan University, M.Tech. degree in CSE from Pondicherry University and

PhD degree in CSE from Pondicherry University. She is working as Assistant Professor in the Department of Information
Technology; Pondicherry Engineering College. She is a Life member of ISTE.

M. Seshank kumar

He is pursuing his B.Tech degree in the Department of Information Technology, Pondicherry Engineering College from
Pondicherry University.

