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Abstract: In the classical realm to change the velocity of an electron, the presence of a Lorentz force is essential to act upon it. I 
argue that the classical picture is not adequate to understand such changes in the behaviour of microscopic particles. When I 
explain the response from quantum mechanical point of view, I find that there is no need to hypothesize the additional classical 
ideas. I propose to utilize the set of quantum theoretical principles to resolve the puzzles in the superconducting phase as pointed 
out by Hirsch [Phys. Lett. A 315(6)(2003) 474-479]. 
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I. INTRODUCTION 
To account for the behaviour of the physical object under the influence of a force field, we have to choose the classical or quantum 
points of view for the object and possibly as well as for the force field in accordance with the conditions of experimentation. In classical 
physics, the particle and the wave theories are related via the Lorentz law of force that an electromagnetic field (wave nature) exerts on 
an electron (particle nature). Classically, an electron does not change its state of motion in the absence of an electromagnetic force. 
That is, E=0 and B=0, make the Lorentz force [1] 

           
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 Thus the kinematical momentum must remain unaltered. But here we are considering the electron as a purely classical object and 
leaving no hole to enter the principle of uncertainty, which opens the possibilities to understand the peculiarities of a measurement. The 
central concept in any physical event is that of the measurement. By measurement, we mean the process of interaction between a 
quantum system and an apparatus which is generally a classical object. In the classical description of motion we always remain assured 
that we have measured the momentum and velocity with unlimited accuracy. But in quantum physics the two natures are not too 
distinct. The whole story cannot remain unchanged when we switch over to quantum theoretical version of the same problem as a 
momentum measurement of high accuracy made during a short time can occur only if there is a large change in the velocity as a result 
of the measurement process itself. So that the uncertainty condition [2] 

  2
    

v v p t                      (2) 

is fulfilled. This compels us to rethink about the Lorentz force description of behaviour of an electron; however, it is well described by 
the quantum mechanical state function. Rather we can think about the quantum mechanical version of the Lorentz force which is a 
manifestation of the Ehrenfest theorem [1]. The problem occurs when we try to find out instantaneous values rather than the average 
ones. Classically, a measurement must never change the physical state of system while, quantum mechanically, a measurement always 
causes the physical system to jump into an eigen state of the dynamical variable that is being measured [3]. Therefore, when describing 
the response of an electron in a measurement quantum mechanically, we allow the possibilities in behavioural response of the system 
and it becomes not strictly essential that electron would never change its state of motion in the absence of the Lorentz force. Thus there 
may be effect of magnetic field in the region where the field is identically zero at all. Such thing happens in Aharonov- Bohm effect in 
which the interference pattern depends upon the presence or absence of magnetic field inside the impenetrable region of state function 
[4]. Moreover, a quantum mechanical description of the motion claims the existence of a complex state function. It is well understood 
that the amplitude of state function plays an important role in such a description. In case of coherent state the phase of state function 
also becomes an entity of immense utility. The phase of state function depends upon the (magnetic) vector potential as well as upon the 
scalar (electric) potential. The change of phase with position may occur under the influence of such potentials. A change in phase can 
lead to dynamical response as observed in Josephson Effect. The superconductivity is a phase coherent quantum state and cannot be 
exactly understood on classical or semi-classical grounds. 
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II. THE MEISSNER –OCHSENFELD EFFECT 
A superconductor is different from a perfect conductor in the context that within a perfect conductor, we observe the fields E=0 and 
B= constant. (depending upon the previous history), while well within the type I superconductor, we always have E=0 and B=0 
(independent of the previous history). This is the well-known Meissner effect and it cannot be well understood in pure classical 
framework. It shows that a superconductor is a perfect diamagnet; magnetic flux is excluded from all but a thin penetration region 
near the surface. It is interesting to know that occurrence of the Meissner effect and presence of the gap  are two correlated 
phenomena. In the normal state (no gap) we can expect the response of the matter to applied magnetic field in a very natural way. 
But in a superconducting phase (with a significant gap) the material must be idle to respond to external magnetic field as the carriers 
are not allowed to cross the gap to follow the external field and hence the interior region of the material must exhibit the 
independent magnetic property [5]. Since we hope that in the absence of any external field there must be no induction at all. We can 
very naturally set, B=H+4πM=0 i.e., χ =M/H=-1/4π. Thus we are in a position to explain if a perfect conductor were a 
superconductor B= constant = 0 (always!).  Further, one can argue   when no gap (normal phase) filaments are formed in the 
superconducting material, what we call type II superconductors; the response to field must be entirely amazing [6]. Of course we 
can accept Hirsch’s idea [7]. Since the vortices are normal phase domains, the flux quanta not only penetrate  the material, but they 
also move in response to the Lorentz force, F=J×B/c  [8]. The only way for vortices to be formed and move around without global 
consequences is when each flux quantum contains a flux such that the path difference in Aharonov-Bohm effect is 

 2      
 

e n
c

    
    

           (3) 

giving no observable phase [9]. In similar way we can expect that it is the gap which makes state function to be rigid. Now it is 
suitable time to propose safely that the concept of Lorentz force will work well to the electrons that have not participated in Cooper 
pair formation; but in my opinion the idea of the Lorentz force may not be so easily extended to explain the behaviour of the carriers 
in the entire superconducting regime. Moreover, the vortex motion can also be manipulated by thermal or Lorentz force in high 
temperature superconductors [10]. Kim et al. found that except the flux motion the broadened resistive transitions demonstrate the 
absence of the macroscopic Lorentz force [11]. 
 

III. THE EFFECT OF ROTATION ON SUPERCONDUCTIVITY 
The semi-classical approach regarding the effect of rotation on superconductors is based on the London field [12]. However, to get 
more subtle understanding we have to reconsider the physics behind London’s law. In presence of electromagnetic field the canonical 
momentum becomes the kinematical one and the ground state of superconductivity is one with zero momentum and zero spin. Hence 

we have,  s
eAmv
c

 

and if the magnetic field is uniform, we can easily get, 1
2

 
  
A B r ,  if combined, these two expressions give, 1
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Hence the desired expression for the London field comes out to be: 2
 

 mcB
e

. Now the question arises in a very natural way; in 

case of superconductivity in no way there exists a uniform magnetic field. Rather we can accept,    0  xB x B e
 
 . Hence the 

London’s law should no longer persist to be never violated. Of course, in multi-component superconductors it is really violated [13]. 
The above derivation of the London’s law lies in pure classical framework. A quantum mechanical system can very easily give non-
classical response. However, in response to exceeding a certain critical frequency of rotation, the single-component superfluid fraction 
comes into rotation by means of vortex formation. But in multi-component compounds vortices are not induced by rotation.  Moreover, 
the Onsager- Feynman quantization rule is also violated [13]. Actually the violation of the semi- classical formulation of the laws may 
be inherent in their nature. The derivation includes the closed line integral alike in the case of Bohr’s Model, while the probabilistic 
interpretation in three dimensions is more subtle to understand the behaviour of the microscopic particle being in motion. In fact, the 
semi-classical formalism is a special case of the quantum theoretical formalism. Hence we should not prefer to postulate new classical 
ideas to sustain the semi-classical formulation. The quasi-quantum mechanical analogue of London’s law may be performed by noting 

that the superfluid velocity of electrons in a vortex at a large distance from the core is governed by 2
  s

eAmv
c

 , where  is the 

phase of state function describing the condensate [14]. After such considerations the modified London’s field comes out to be,   
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Neither the Lorentz law of force nor the London’s law includes the super fluid velocity, 

 
0   


sv

m   
free from presence or absence of the electromagnetic fields.  Since the presence of magnetic field in the thin surface layer is feasible, 
any changes in space-time domain will develop the consistent electric field.  Hence we should expect correction to the electric field 
escaped in Hirsch’s formulation. In classical theoretical framework, the quantum mechanical uncertainty relation, N ~1, puts the 
limit to observe  so rapidly changing phase if  the number of particles is a constant [15].

 

IV. THE FLUX QUANTIZATION 
The flux quantization and Aharonov- Bohm effect are two closely related phenomena, as the quantized flux gives no observable 
phase difference. The entire superconducting state is a phase-coherent one, so there must be no phase difference at all. However, I 
proclaim that if there is any violation of flux quantization, there would an observable Aharonov- Bohm effect!  Recently, it has been 
found that the quantization of magnetic flux in LMH (liquid metallic hydrogen) is fractional [16]. In dual superconductors a vortex 
can possess arbitrary fraction of magnetic flux quantum 

cos
2

 
c
e

                (5)     

depending on parameter cos measuring relative densities of two condensates in superconductor. I suggest that there should be 
detectable Aharonov- Bohm effect. Such quantum –mechanical phenomena cannot be understood at all on the basis of new 
additional classical assumptions. 

V. CONCLUSION 
To sum up, I would like to suggest that the Lorentz force and the London’s law are not enough powerful to explain the behaviour of 
an electron in superconducting phase. They help to understand the macroscopic properties of the superconductor and average 
motion of the vortices. But the full description is still not possible to be come out from these laws as there is no account of the phase 
of state function in such laws. Thus the phase related phenomena will not be explained in their framework. It is always fruitful to 
consider the superconducting phase with a well-defined complex state function with real amplitude and real phase. The fractional 
flux quantization will result in Aharonov-Bohm effect. Hence, in my opinion, there must be more emphasis on Aharonov-Bohm 
effect rather than on Lorentz force or London’s field when discussing superconductivity. The breakdown of Meissner effect opened 
a new class of superconductors-Abrikosov superconductors with Schubnikov phase. The breakdown of flux quantization must open 
another class of superconductors- Aharonov-Bohm superconductors (say!), still not fully understood phase.   
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