

9 III March 2021

https://doi.org/10.22214/ijraset.2021.33410

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue III Mar 2021- Available at www.ijraset.com

985 ©IJRASET: All Rights are Reserved

Web Application Security Threats and Analysis of Vulnerability Scanners
Sukriti Jaitly1, Mohak Verma2

1, 2Vellore Institute of Technology, Vellore

Abstract: In recent years, web security has been regarded in terms of protecting the web application layer from unauthorized
users' attacks. As our reliance on technology grows exponentially, security becomes increasingly important. The main objective
of this paper is to provide knowledge about web application layer vulnerabilities, their prevention methods and to perform a
comparison of the latest tools and mechanisms used to detect these threats and vulnerabilities.
Keywords: Web Application Vulnerability, Cybersecurity, Hackers, Vulnerability Scanners, Cyber-Threats, SQL-Injection,
Cross-Site Scripting, Broken Authentication.

I. INTRODUCTION
The internet has had a major effect on human lives. It has not only revolutionized communication but has vastly influenced how we
live our daily lives. The accessibility and use of web applications have made them indispensable. The more we rely on web
applications the more crucial it becomes to keep a check on the threats and vulnerabilities these applications are susceptible to since
malicious intentions have always surrounded the use of web applications. The risk of hackers getting the better of web security has
made researcher's more vigilant on making web applications safer and free from malware which can cause detrimental effects. Web
applications cannot survive in today’s complex computer ecosystem without a well-structured and well-maintained security system
as new threats and vulnerabilities are revealed every day. Hackers are getting smarter and new vulnerabilities are identified which
can be attacked and benefit people with felonious intent Web applications continue to be infected with security flaws, allowing
attackers access to sensitive data and allowing malware to infect legitimate websites. Hence there is an increasing need for web
applications security amongst a surge in the number of cases of threats and vulnerabilities which can lead to data loss, data theft. In
this paper, we will be exploring the majority of web application vulnerabilities which include SQL injection, Cross-site scraping,
and others we will be reviewing how to deal with them through vulnerability scanners. We will be studying prevention techniques
and basic measures which can be employed in order to keep applications safe and secure from hackers. However, precautionary
measures and prevention techniques can only keep a web application safe to a certain extent, as technology gets evolved these web
applications are exposed to new security challenges. In such cases, web vulnerability scanners are very essential to test web
applications for security vulnerabilities. Major web application security tools are hence explored in this study. Further, we will
proceed to work with these scanners on a specific web page and analyze their performance and ease of use.

II. WEB SECURITY THREATS AND VULNERABILITIES
A. SQL Injection
SQL injection is one of the most significant security flaws in Web application systems; the majority of these flaws are caused by a
lack of input validation and the use of SQL parameters. [2] SQL injection is a type of web application security vulnerability in
which an attacker injects malicious input into an SQL statement. Attackers use SQL injection to extract sensitive information from
databases. Arguments are used in SQL statements to pass data to and from users into a secure database. Attackers use the points
where the app connects to a database with a SQL argument to gain access to sensitive information and other secured areas unless the
values of these user-supplied SQL arguments are secured by sanitizing statements.[1]
An attacker may make use of a SQL injection vulnerability to perform operations such as delete, add, edit, access sensitive
content, or read source code from database server files. Files can be written to the database server. It all depends on the attacker's
skills, exploiting a SQL injection vulnerability can even result in a complete takeover of the database and the webserver. SQL
injections are to blame for a number of high-profile data breaches every year.

B. Cross Site Scripting
Cross Site Scripting Attacks also known as XSS are a type of client-side injection code attack in which malicious scripts are injected
into websites that appear to be trustworthy to the user. The web page is used as a vehicle to deliver the harmful embedded script to
the user’s browser. Web pages such as message boards, forums, and web pages with commenting capabilities are common targets
for Cross-site Scripting attacks. [4] Any web page that uses unsanitized user input in the output it generates is at risk of an XSS
attack.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue III Mar 2021- Available at www.ijraset.com

986 ©IJRASET: All Rights are Reserved

C. Code Injection
Code injection is a web security threat that is caused when a malicious code is injected into an unattended computer system which
gives access to the server-side interpreter to impede the processing of application software.
A harmful code is purposely injected with an intention to attack as the code is interpreted and executed by application leads to
malevolent outcomes. The injected code is in the same language as the software application which is attacked, this malicious code
hinders the proper functioning of the software and gives power to the server-side interpreter to gain access controls to change data or
hinder program execution.[1]

D. Broken Authentication
Broken authentication takes place when an online portal has a very poorly implemented and constructed authentication and session
management system. Authentication systems act as a safeguard to any online portal as they ensure only valid and verified users can
use their own personal portal. Broken authentication is a widespread web threat that embodies several vulnerabilities which let
attackers capitalize an opportunity to mimic actual users and breach through several actual online portals to cause damage.
Broken authentication attacks the weak and fragile nature of the session management system. The credential management system is
also exploited vastly and IDs are hijacked by the attacker with malicious intent.[7]

III. COUNTERMEASURES TO WEB SECURITY THREATS
SQL-related web application vulnerabilities can be counteracted by using prepared statements with parameterized queries. A
prepared statement sanitizes the input and guarantees that it is treated as a string literal rather than being a part of the SQL query. To
put it another way, the database can distinguish between SQL data and SQL code and is no longer vulnerable to SQL injection
attacks.
Another choice to prevent SQL injection Attacks would be to switch to Object Relational Mapping Tools (ORMs). [2] The
Malicious effects of code injection can be prevented by validating suspicious input data, system should scan for special keys which
makes authentication vulnerable towards attack.
The system must treat all data as suspicious and should thoroughly check for any alterations in credentials or possible manipulation
of data. Regular Check on code structure and the system Architecture should be employed. Static analysis can help to identify major
vulnerabilities which are related to unsafe sessions.[4]
For broken authentication web application security threats, the system should regulate session lengths and its duration. The web
application must restrict a web session once user portal was left inactive for a long duration of time. Multi-factor authentication is
one way in which hackers can be prevented from entering and hampering web portals. It should be made mandatory to set highly
complex passwords with special characters and hot keys which makes it harder to break through the privacy. Improvement in
session management can also keep a web portal safer as a new session is launched every-time after a successful authentication is
done. Employment of brute force protection should be made compulsory as it only allows a specific amount of log in trials and once
failed, it locks the IDs for a certain duration.
XSS attacks can be avoided by sanitizing user input. Validating and encoding output to prevent potentially vindictive user-provided
data from causing automatic load-and-execute actions by a browser. Using a web application vulnerability scanning tool on a
regular basis to detect XSS vulnerabilities in your applications adds another layer of security and prevention against XSS attacks.

IV. SECURITY VULNERABILITY SCANNERS
A. Arachni
Arachni is an open-source tool used for penetration testing environments and to detect various web application security
vulnerabilities.
It is capable of performing web-based security audits and data scraping. This tool has a high level of network performance since it is
based on an asynchronous HTTP request/response model, which means that in asynchronous I/O, operations can be planned in such
a way that they appear to be happening at the same time, resulting in better bandwidth utilization and productivity.

B. ZAP
Zed Attack Proxy, also known as ZAP is a tool developed by the Open Web Application Security Project (OWASP). It is a Java-
based tool with an easy-to-use graphical interface that allows web application security testers to perform scripting, spidering,
fuzzing, and proxy attacks on web applications. This tool can be used as a scanner by entering the URL, or you can use it as an
intercepting proxy to perform manual testing on particular pages.[3]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue III Mar 2021- Available at www.ijraset.com

987 ©IJRASET: All Rights are Reserved

C. VEGA
It is a widely-used open-source web security scanner and tester. It provides a testing platform where one can check for web
applications’ security threats. Vega incorporates an automated scanner that quickly testifies vulnerabilities. JavaScript is used in
VEGA threat detection modules which makes it quite handy to work in Windows Linux and OS X.

D. Burp Suite
Burp Suite is an integration of a set of penetration testing and vulnerability finder tools that are used to detect and testify the
presence of various types of web application threats. The set of tools work seamlessly together to detect analyze and map the attack
surface and well as search through the web application to explore new vulnerabilities.

V. ANALYSIS
To compare and analyze the working of the above-mentioned web application security tools. We ran the same web application
website through all of them for the same specific amount of time which was 12 minutes.
Over the course of 12 minutes, Arachni was able to discover 91 vulnerabilities and threats. The 91 vulnerabilities were divided into
19 categories. The software generated a well-documented report that was simple to read and understand. The other software’s were
able to discover more vulnerabilities, but Arachni's information was rather straightforward. The scan was also simple to complete.
As a result, this can be recommended to those who are beginners and aren’t well versed. In the same 12 minutes, ZAP discovered
nearly 300 vulnerabilities, threats, and data. The report, on the other hand, was cluttered and difficult to read and understand.
Despite the disparity in the number of vulnerabilities discovered, ZAP only divided them into four categories. Furthermore, the
number of high and medium alerts was about the same. As a result, we can deduce that there might be a discrepancy in how they
classify threats/vulnerabilities. Many of the alerts were simply just extra information that had nothing to do with the threats. As a
result, it is suited for those who are slightly more advanced. In the same timeframe, Burp suite discovered around 100
vulnerabilities. Its additional information was not especially valuable in comparison to all the others. It was, nonetheless, a great
application for scanning for vulnerabilities alone, as well as providing more functionality for testing for these flaws.
Vega was able to discover around 300 vulnerabilities/threats/information in the given timeframe. It was also delivered in a well-
documented and easy-to-read manner. It was broken down into 12 different categories. We can conclude that VEGA was the
foremost software we tested for scanning web applications for vulnerabilities and threats. It is suitable for the majority of people.

VI. CONCLUSIONS
Through the course of this study, we looked at various threats that a web application can be subjected to by an attacker outlining the
causes and the ill affects these threats have on a web application. While studying various threats and ways to counteract these
vulnerabilities we outlined the precautionary measures and prevention techniques which can be employed in order to protect one
web application from malicious intent. In this paper, we compared 4 vulnerability scanners and found VEGA to come up at the top
for scanning for web app vulnerabilities. It not only scans and detects a wide range of critical vulnerabilities, but it also provides a
wealth of information about each one, including the type, level of threat, possible design flaws that lead to the vulnerabilities, and
suggested remediation. As technology advances at a rapid rate, the need for protection against various cyber-threats will only grow
in the coming years. Cybersecurity will become a necessity in our daily lives and will play a larger role in industries.

REFERENCES
[1] S. Kumar, R. Mahajan, N. Kumar and S. K. Khatri, "A study on web application security and detecting security vulnerabilities," 2017 6th International

Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 2017, pp. 451-455, doi:
10.1109/ICRITO.2017.8342469.

[2] Li Qian, Zhenyuan Zhu, Jun Hu and Shuying Liu, "Research of SQL injection attack and prevention technology," 2015 International Conference on
Estimation, Detection and Information Fusion (ICEDIF), Harbin, China, 2015, pp. 303-306, doi: 10.1109/ICEDIF.2015.7280212.

[3] Holm, Hannes & Sommestad, Teodor & Almroth, Jonas & Persson, Mats. (2011). A quantitative evaluation of vulnerability scanning. Inf. Manag. Comput.
Security. 19. 10.1108/09685221111173058.

[4] Elkhodr M., Patel J.K., Mahdavi M., Gide E. (2020) Prevention of Cross-Site Scripting Attacks in Web Applications. In: Barolli L., Amato F., Moscato F.,
Enokido T., Takizawa M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent Systems and Computing, vol
1150. Springer, Cham. https://doi.org/10.1007/978-3-030-44038-1_100.

[5] Erturk, Emre & Rajan, Angel. (2017). Web Vulnerability Scanners: A Case Study.
[6] W. Qianqian and L. Xiangjun, "Research and design on Web application vulnerability scanning service," 2014 IEEE 5th International Conference on Software

Engineering and Service Science, Beijing, China, 2014, pp. 671-674, doi: 10.1109/ICSESS.2014.6933657.
[7] Noman, Muhammad & Iqbal, Muhammad & Manzoor, Engr. Dr. Amir. (2020). A Survey on Detection and Prevention of Web Vulnerabilities. International

Journal of Advanced Computer Science and Applications. 11. 521-540. 10.14569/IJACSA.2020.0110665.

