Solvent Free Synthesis of some Metal Complexes of Novel Ligand Derived from 2-Amino-5, 6-Dimethyl Benzimidazole with 2-Bromo Isophthalaldehyde and Characterization, Biological Activity of Same

Pawar R M ${ }^{1}$, Moharir S P ${ }^{2}$, Undegaonkar M G ${ }^{3}$, Sinkar S N^{4}, Mirgane S R ${ }^{5}$
${ }^{l}$ Dept. of chemistry, College Majalgaon, Dist- Beed
${ }^{2}$ Dept. of chemistry, Siddharth Arts Commerce and Science College Jafrabad, Dist. - Jalna
${ }^{3}$ Dept. of chemistry, Arts, Science and Commerce College Badnapur, Dist. - Jalna
${ }^{4}$ Dept. of chemistry, M.S.S. College Ambad , Dist. -Jalna
${ }^{5}$ Dept.of.Chemistry, JES College Jalna.

Abstract

A solvent free and environmentally green synthesis using scientific microwave method of novel ligand derived from 2-amino-5,6-dimethyl benzimidazole with 2-bromo Isophthalaldehyde. Metal complexes were derived from nitrate of Mn(II) and chlorides $\operatorname{Ag}(I), \mathrm{Co}(I I), \mathrm{Ni}(I I), \mathrm{Cu}(I I), \mathrm{Zn}(I I), \mathrm{Cd}(I I), \mathrm{Fe}(I I I)$ salts with novel ligand. At the end of the reaction all metal complexes show fine color. By TLC and melting point of each complex was confirming the formation of metal complex. Characterization of novel ligand carried out by elemental analysis, IR spectroscopy, ${ }^{1} H N M R$ spectroscopy, LCMS and characterization of metal complexes carried out by IR spectroscopy, UV spectroscopy and TGA. The novel ligand and its all metal complexes show antibacterial activity against E-Coli, S.Aureus and S.Typhi.

Keywords: Solvent free, Green Synthesis, 2-amino-5,6-dimethyl benzimidazole, 2-bromo Isophthalaldehyde, Antibacterial activity.

I. INTRODUCTION

Solvent free, green and eco-friendly view of synthesis is increasing in chemistry. Now a day, use of scientific microwave for synthesis is becoming popular. This is the solvent free or less solvent synthesis. It helps to reduce pollution, gives better yield and reduces cost. Simple reaction conditions and important is time saving [1-3]. Synthesis using microwave irradiation technique is environmentally very safe and effective [4-5]. The compound containing Azomethine/Imine ($\mathrm{C}=\mathrm{N}$) group are known as Schiff base ligand [6]. The products of ketone or aldehyde with primary amine are generally known as Schiff base [7]. They are biologically very active compounds, having biological activities like antibacterial [8], antimicrobial [9], anticancer [10], plant growth inhibitors [11] and so on.

II. EXPERIMENTAL SECTION

All the chemicals used in this work were of analytical grade. 2-amino-5,6-dimethyl benzimidazole and 2-bromo Isophthalaldehyde form Sigma Aldrich and metal nitrates and chlorides from loba chem and MERCK. The novel ligand synthesized in scientific microwave oven. Metal complexes were synthesized by reacting novel ligand with metal salts in scientific microwave oven.

A. Material and Method

All the starting chemicals are of analytical grade. 2-amino-5,6-dimethyl benzimidazole and 2-bromo Isophthalaldehyde were purchased from Sigma Aldrich and metal salts from Loba chem and MERCK. The novel Schiff base ligand was synthesized by using scientific microwave oven. Syntheses of metal complexes were performed by reacting Schiff base ligand with metal salts in scientific microwave oven.

B. Techniques

Synthesis was performing in microwave extraction system in scientific microwave oven. Melting points were measured on digital melting point apparatus. The electronic absorption spectra were recorded in the wavelength range 200 to 400 nm using UV spectrophotometer. IR spectra were analyses on Shimadzu Dr 8031. The ${ }^{1}$ HNMR spectra was analyse in DMSO D6 on Brakers 400 MHz instrument. The mass spectrum was recorded by LCMS spectrophotometer. The TGA were carried out in dynamic nitrogen atmosphere ($30 \mathrm{ml} / \mathrm{min}$) with heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ using Shimadzu TGA 50 H thermal analyser. TLC analysis performs on pre coated aluminium plates.

C. Preparation of Novel Ligand

The novel Schiff base ligand was prepared by the reaction between 2-amino-5,6-dimethyl benzimidazole (0.63 gm .) and 2-bromo Isophthalaldehyde (0.38 gm .) under solvent free condition in scientific microwave oven about 15 min . The irradiated product after cooling at room temperature washed with dry ether. The yield obtained was 0.84 gm . And melting point was $256^{\circ} \mathrm{C}$. The purity of the product confirm by TLC.

1) Reaction

(Z)- N-((2-bromo-3-((Z)-(5,6-dimethyl-1 H -benzo[d]imidazol-2-ylimino)methyl)phenyl)methylene)-5,6-dimethyl-1 H-benzo [d]imidazol-2-amine

D. Preparation of Metal Complexes

The metal complexes were synthesized under solvent free condition by irradiating metal nitrate or metal chloride with the required amount of the ligand. The reaction mixture was irradiated in microwave oven. The products were washed with dry ether, filter and dried at room temperature. The metal salts used were MnCl_{2}, $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}, \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ and AgNO_{3}.

III. RESULT AND DISSCUSION

All metal complexes and novel ligand are colored, solid and stable at room temperature. They possess sharp melting point. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO.

A. Physical Properties

Physical properties of the novel ligand and metal complexes summarized in Table I
Table I

Sr. No	Molecular formula	Color	Melting point $\left({ }^{\circ} \mathrm{c}\right)$	Time	Yield \%
1	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}$	Yellow	256	15 min	83
2	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Mn}$	Dark Yellow	181	240 sec.	83
3	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Fe}$	Brown	188	60 sec.	85
4	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Co}$	Brown	174	120 sec.	96
5	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Ni}$	Light Green	208	60 sec.	100
6	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cu}$	Green	148	60 sec.	100
7	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Zn}$	Dark Yellow	132	60 sec.	100
8	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cd}$	Greenish	280	90 sec.	100
9	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Ag}$	Yellow	218	60 sec.	100

B. Mass Spectral Studies

The mass spectrum study of novel ligand showed a peak at $\mathrm{m} / \mathrm{z} .500(\mathrm{M}+1)$ that corresponds to the molecular weight of the Schiff base ligand 499.

C. ${ }^{I}$ HNMR Spectral Studies

Observed ${ }^{1}$ HNMR peaks (ppm) of novel Schiff base ligand summarized in Table II.
Table-II

Compound	H-from four Methyl Groups in ppm	H-from Aromatic ring In ppm	H-from-NH of Imidazole In ppm
$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}$	$2.50-2.51$	$6.87-8.48$	5.89

The ${ }^{1}$ HNMR spectrum of novel ligand shows different peaks. The characteristic peak observed at 5.89 ppm is due to H -from NH-of Imidazole. The peaks observed at $6.87-8.48 \mathrm{ppm}$ are due to H -from aromatic rings. The peaks observed at $2.50-2.51 \mathrm{ppm}$ is due to H-from four Methyl Groups.

D. Infrared spectra analysis

Observed IR frequencies of novel ligand and its metal complexes summarized in Table III.
Table-III

Sr. No	Ligand/complex	$\mathrm{C}=\mathrm{N}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{C}-\mathrm{H}\left(\mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right)$	$\mathrm{N}-\mathrm{H}\left(\mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right)$	$\mathrm{C}=\mathrm{C}$ $\left(\mathrm{cm}^{-1}\right)$	$\mathrm{M}-\mathrm{N}\left(\mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right)$
1	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}$	1662.64	3280.92	3452.58	1471.69	---
2	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Ni}$	1730.15	3200.00	3420.00	1454.33	576.72
3	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cu}$	1680.00	3190.00	3400.00	1575.84	513.07

The IR spectrum of novel ligand show characteristics band at $1662.64 \mathrm{~cm}^{-1}$ which indicates ($\mathrm{C}=\mathrm{N}$) stretching vibration of azomethine group [12-17]. The vibrational band at $3452.58 \mathrm{~cm}^{-1}$ assigned $\mathrm{N}-\mathrm{H}$ stretching in the ligand. Band observed at 1471.69 cm^{-1} corresponds to $\mathrm{C}=\mathrm{C}$ stretching. The band observed at $3280.92 \mathrm{~cm}^{-1}$ indicates aromatic $\mathrm{C}-\mathrm{H}$ stretching in the ligand.
IR spectral study of Ni metal complex: The band appeared at $1730.15 \mathrm{~cm}^{-1}$ corresponds to azomethine $(\mathrm{C}=\mathrm{N})$ stretching, whereas same azomethine band is observed at $1662.64 \mathrm{~cm}^{-1}$ in spectrum of ligand. Which indicate coordination of ligand with metal ion [18]. The band appeared at $3200.00 \mathrm{~cm}^{-1}$ indicates the aromatic (C-H) stretching in complex, whereas same aromatic (C-H) stretching is observed at $3280.92 \mathrm{~cm}^{-1}$ in spectrum of ligand. The band observed at $3420.00 \mathrm{~cm}^{-1}$ assign to $(\mathrm{N}-\mathrm{H})$ stretching, whereas in spectrum of ligand it is observed at $3425.58 \mathrm{~cm}^{-1}$. The vibration observed at $1454.33 \mathrm{~cm}^{-1}$ due to aromatic ($\mathrm{C}=\mathrm{C}$) stretching. The characteristics band appeared at $576.72 \mathrm{~cm}^{-1}$ assign to ($\mathrm{M}-\mathrm{N}$) vibration, which confirms coordination of azomethine and metal ion [19-20]. The weak bands observed at $825.53 \mathrm{~cm}^{-1}$ and $1035.77 \mathrm{~cm}^{-1}$ were due to OH wagging mode of vibration, indicating coordination of water molecule in metal complex [21-24]. Above bands which are appeared in spectrum of complex are not appeared in spectrum of ligand that confirm the formation of metal complex with stable metal ligand bonding.
IR spectral study of Cu metal complex: A stretching observed at $1680.00 \mathrm{~cm}^{-1}$, which corresponds to azomethine $(\mathrm{C}=\mathrm{N})$ stretching vibrations, whereas same stretching is observed at $1662.64 \mathrm{~cm}^{-1}$ in spectrum of ligand. The band appeared at $3190.00 \mathrm{~cm}^{-1}$ assign to aromatic (C-H) stretching, whereas same stretching is observed at $3280.92 \mathrm{~cm}^{-1}$ in spectrum of ligand. The vibration observed at $1575.84 \mathrm{~cm}^{-1}$ due to aromatic $(\mathrm{C}=\mathrm{C})$ stretching. The coordination of metal to nitrogen was justified by stretching observed at 490 cm^{-1} [25]. The weak bands observed at $825.53 \mathrm{~cm}^{-1}$ and $1033.85 \mathrm{~cm}^{-1}$ were due to OH wagging mode of vibration, indicating coordination of water molecule in metal complex [21-24]. Above bands which are appeared in spectrum of complex are not appeared in spectrum of ligand that confirm the formation of metal complex with stable metal ligand bonding.

E. Electronic spectra

UV-Vis spectral data and probable geometry for the metal complexes summarized in Table IV
Table-IV

$\begin{aligned} & \text { Sr. } \\ & \text { No. } \end{aligned}$	Complex	UV-visible major bands. Absorption Maxima cm ${ }^{1}(\mathrm{~nm})$	Assignment	Proposed geometry
1	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Ni}$	43898.15 (227.80)	${ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{2 \mathrm{~g}}(\mathrm{~F})$	Octahedral
		44563.27 (224.40)	${ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{~F})$	
		47438.33 (210.80)	${ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{P})$	
2	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cu}$	40650.40 (216.00)	${ }^{2} \mathrm{~B}_{1 \mathrm{~g}} \rightarrow{ }^{2} \mathrm{~A}_{1 \mathrm{~g}}$	Octahedral
		46296.29 (208.60)	${ }^{2} \mathrm{~B}_{1 \mathrm{~g}} \rightarrow{ }^{2} \mathrm{~B}_{2 \mathrm{~g}}$	
			${ }^{2} \mathrm{~B}_{1 \mathrm{~g}} \rightarrow{ }^{2} \mathrm{E}_{\mathrm{g}}$	

UV-Vis spectrum of both metal complexes $\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ recorded in the wavelength region 200 nm to 400 nm in DMSO solution.
UV-Vis spectral data of Ni: Electronic spectrum of $\mathrm{Ni}(\mathrm{II})$ complex shows absorption maxima at 43898.15 (227.80), 44563.27 (224.40) and 47438.33 (210.80) assign to ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{2 \mathrm{~g}}(\mathrm{~F}),{ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{~F})$ and ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 g}(\mathrm{P})$ transitions respectively indicating that complex possess octahedral geometry[26-27].
UV-Vis spectral data of Cu : Electronic spectrum of $\mathrm{Cu}(\mathrm{II})$ complex shows absorption maxima at 40650.40 (216.00) and 46296.29 (208.60) assign to ${ }^{2} \mathrm{~B}_{1 \mathrm{~g}} \rightarrow{ }^{2} \mathrm{~A}_{1 \mathrm{~g}}$, ${ }^{2} \mathrm{~B}_{1 \mathrm{~g}} \rightarrow{ }^{2} \mathrm{~B}_{2 \mathrm{~g}}$ and ${ }^{2} \mathrm{~B}_{1 \mathrm{~g}} \rightarrow{ }^{2} \mathrm{E}_{\mathrm{g}}$ transitions indicating that complex possess octahedral geometry[28-29].

F. Thermo Gravimetric Analysis of Metal Complexes

Thermo gravimetric analytical data of metal complexes were summarized in Table V .

$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Ni}$		$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cu}$	
Weight loss \%	Temperature ${ }^{\circ} \mathrm{C}$	Weight loss \%	Temperature ${ }^{\circ} \mathrm{C}$
0	29.22	0	29.74
10	143.30	10	93.52
20	213.54	20	145.87
30	292.20	30	226.75
40	314.92	40	263.84
50	367.38	50	348.18
60	422.05	60	377.77
70	449.05	70	394.49
80	476.17	80	452.83
84.184\% total wt. loss	500	84.832\% total wt. loss	500

The TGA curve of $\mathrm{Ni}(\mathrm{II})$ was carried out in the temperature range from $29.22^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$. The heating was carried out in the nitrogen atmosphere, with heating rate $10^{\circ} \mathrm{C} \mathrm{min}$.
In the range of $29.94^{\circ} \mathrm{C}$ to $143.30^{\circ} \mathrm{C}$ water of crystallization lost with 10% weight loss is observed. Then loss up to organic moiety total weight loss of 84.184% at $500^{\circ} \mathrm{C}$. Stable curve indicates formation of metal oxide of nickel.
The TGA curve of $\mathrm{Cu}(\mathrm{II})$ was carried out in the temperature range from $29.74^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$. The heating was carried out in the nitrogen atmosphere, with heating rate $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The thermogram of $\mathrm{Cu}(\mathrm{II})$ shows total weight loss of 69.51%. Firstly loss water of crystallization in the range of $29.74^{\circ} \mathrm{C}$ to $93.52^{\circ} \mathrm{C}$. Lastly loss of organic moiety with total weight loss at $500^{\circ} \mathrm{C}$ was 84.832%. A stable curve shows the formation of metal oxide of copper.

Proposed structure of metal complex (M)=Mn(II), $\mathrm{Fe}(\mathrm{III}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Cd}(\mathrm{II}), \mathrm{Ag}(\mathrm{I})$.

G. Bioactivity Study

Antibacterial activity of novel Schiff base ligand and its metal complexes were summarized in Table VI.
Table-VI

Sr. No.	Compound	Minimum inhabitation concentration (ug/ml)		
		E. Coli	S. Aureus	S. Typhi
1	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}$	250	125	250
2	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Mn}$	62.5	500	250
3	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Fe}$	500	500	100
4	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Co}$	100	250	100
5	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Ni}$	125	250	50
6	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cu}$	100	250	125
7	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Zn}$	200	50	25
8	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cd}$	100	125	125
9	$\left[\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{Br}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Ag}$	250	250	200

Antibacterial activity of synthesized novel ligand and its metal complexes were performing against Escherichia Coli, Staphylococcus Aureus and Salmonella Typhi. Which were grown overnight at $37^{\circ} \mathrm{C}$ temperature. The minimum inhibitory concentration (MIC) was evaluated against test bacteria. Concentration ranging is in between $0.4 \mathrm{ug} / \mathrm{ml}$ to $10 \mathrm{ug} / \mathrm{ml}$. Mn (II) shows better and $\mathrm{Co}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ good antibacterial activity on E.coli as compared to rest of metal complexes and parent ligand. Zn (II) complex shows excellent antibacterial activity on S.Aureus as compared to rest of metal complexes and parent ligand. $\mathrm{Zn}(\mathrm{II})$ and $\mathrm{Ni}($ II $)$ shows excellent antibacterial activity on S.Typhi as compared to rest of metal complexes and parent ligand.

IV. CONCLUSION

The microwave method assures the principle of green chemistry. The novel ligand was synthesized from 2-amino-5,6-dimethyl benzimidazole and 2-bromo Isophthalaldehyde. It forms stable binuclear complexes with transition metal ions such as Mn (II), $\mathrm{Fe}(\mathrm{III}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ and $\mathrm{Ag}(\mathrm{I})$. The novel ligand and its eight metal complexes show good antibacterial activity.

REFERANCES

[1] K. Mahajan, N. Fahmi, R.V. Singh, Indian J. Chem. A 46(2007)1221
[2] K. Sharma, R. Singh, N. Fahmi, R. V. Singh, Spectrochim. Acta, A 75 (2010) 422
[3] K. Mohanan, B. S. Kumari, G. Rijulal, J. Rare Earths 26 (2008) 16
[4] R. K. Dubey, U. K. Dubey, C. M. Mishra, Indian J. Chem., A 47 (2008) 1208
[5] Shinde A, Zangade S, Chavan S, Vibhute Y. Microwave induced synthesis of bis-Schiff base! from propane-1, 3-diamine as promising antimicrobial analogs. Org Commun. 2014;7(2):60-67.
[6] Mishra A, Purwar H, Jain R, Gupta S. Microwave Synthesis, Spectral, Thermal and Antimicrobial Studies of $\mathrm{Some} \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II}) \mathrm{Complexes}$ Containing 2-Aminothiazole Moiety. E-Journal of Chemistry. 2012;9(4):77-85.
[7] Xavier A, Srividhya N. Synthesis and Study of Schiff base Ligands. IOSR Journal of Applied Chemistry, 2014;7(11):6-15
[8] Kumar J, Rai A, Raj V. A Comprehensive Review on the Pharmacological Activity of Schiff Base Containing Derivatives. Organic \&Medicinal Chem 1. 2018;1(3):5-20.
[9] Pahlavani E, Kargar H, Sepehri Rad N. A study on Antitubercular and Antimicrobial activity of Isoniazid derivative. Zahedan journal of Research in Medical Sciences 2014; 17(7):7-10.
[10] Yadav G. Mani J. Green Synthesis of Schiff Bases by Using Natural Acid Catalysts. International Journal of Science and Research. 2015;4(2):121-127.
[11] Osowole A. Ott I, Ogunlana O. Synthesis, Spectroscopic, Anticancer, and Antimicrobial Properties of Some Metal(II) Complexes of (Substituted) Nitrophenol Schiff Base. International Journal of Inorganic Chemistry. 201220127 :1-6.
[12] Campbell M J M and Grzeskowiak R (1967) J. Chem. Soc., A, 396.
[13] Min Wang, Liu-Fang Wang, Yi-Zhi Li and Qin-Xi Li (2001) Transition Metal Chemistry, 26, 307.
[14] Kulkarni A, Patil S A, Badami P S (2009) Eur. J. Med. Chem., 44, 2904.
[15] Silverstein M R, Bassler G C and Morril T C (1981) "Spectrometric Identification of Organic Compounds": John Wiley and Sons, 4th Edn. P. 111-130.
[16] Abdulla A K and Ismail K Z (1994): Canadian J. Chemistry 1994, 72, 1785.
[17] H. F. J. Harold (1974): American Chem. Soc. 12, 3868.
[18] Selbin J (1966) Coord Chem. Rev. 1, 293-314.
[19] Sinn E, Morris C M (1969) Coord Chem. Rev. 4, 891.
[20] Nakagawa L, Shimanonchi T (1964) Specrochim Acta 20, 429.
[21] Nakamoto K (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds: John Wiley \& Sons, New York.
[22] Bellamy L J (1958).The Infrared Spectra of Complex Molecules, Second ed.: Chapman \& Hall, Methuen, London.
[23] Nakamoto K (1971) Infrared Spectra of Inorganic and Coordination Compounds, Part B, Fifth ed.: Wiley Interscience, New York.
[24] Subbaraj P, Ramu A, Raman N, Dharmaraja J (2015) Synthesis, characterization, DNA interaction and pharmacological studies of substituted Benzophenone derived Schiff base metal (II) complexes: Journal of Saudi Chemical Society, 19, 207-216.
[25] Rajendra K. Jain, Anand P. Mishra (2012) Microwave synthesis and spectral, thermal and antimicrobial activities of some novel transition metal complexes with tridentate Schiff base ligands: J. Serb. Chem. Soc, 77 (8), 1013-1029.
[26] Jain Rajendra K, Mishra Anand P (2012) Microwave synthesis and spectral, thermal and antimicrobial activities of some novel transition metal complexes with tridentate Schiff base ligands: J. Serb. Chem. Soc, 77 (8), 1013-1029.
[27] Prajapati P, Brahmbhatt M, Vora J, Prajapati K (2019) Synthesis, Characterization, Catalytic and Antibacterial activities of some transition metal chelates with tridentate Schiff base ligand: RJLBPCS, 5(2), 825-838.
[28] ABP Lever. Electronic spectra of dn ions Inorganic electronic specroscopy. 2nd Ed. 1984.
[29] M.S.Ray, R.Bhattacharya, S.Chaudhuri, L.Righi, G.Bocelli, G.Mukhopa-dhyay, A.Ghosh,Polyhedron. 2003; 22:617-629.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

