On (1, 2) - Domination of Certain Graphs

D. Florence Isido, G. Caroline Vincy
${ }^{1,2}$ PG and Research Department of Mathematics, Loyola College, Chennai-600 034, India

Abstract

A vertex subset S of a graph $G=(V, E)$ is called a (1,2)-dominating set if S is having the property that for every vertex v in V - S there is atleast one vertex in S of distance 1 from v and a vertex in S at a distance atmost 2 from v. The minimum cardinality of a (1, 2)-dominating set of G, denoted by $\Upsilon_{(1,2)}(G)$, is called the (1,2)-domination number of G. In this paper we discuss about the (1, 2)-dominating set of Shell graph C(n,n-3,), Jewel graph J_{n} and Comb graph $P_{n} \Theta K_{1}$. Keywords: (1, 2)-Domination, (1,2)-Domination number, Shell graph C(n,n-3), Jewel graph J_{n} and Comb graph $P_{n} \Theta K_{1}$.

I. INTRODUCTION

The concept of (1, 2)-domination was introduced by S.M. Hedetniemi, S.T. Hedetniemi and co-authors [6]. The author had explained the concept of (1,2)-domination as an extension from secondary domination through an example. Initially he had proposed the idea in a general form as ($1, \mathrm{k}$)-domination. And later he had concentrated on comparison between those dominations. If S is a dominating set then every vertex, say $v \in V-S$ is adjacent to atleast one vertex u_{1} of distance 1 and a vertex u_{2} of distance atmost 2 from S, assuming the vertices of S are considered to be guard vertices of $V-S$. If there is a problem in any of the vertices of $V-S$ then it is easy to send its adjacent vertex, say guard vertex at one step from S. In this situation if it is required to send another guard vertex to assist the previous one which could also be achieved. But the question that how much distance these guards have to be placed for convenient usage is what plays the major role. The focus on the length of time it takes a second guard to arrive at any vertex $v \in V$ is called Secondary domination and in that context $(1,2)$ domination was introduced.
In this paper we determine the $(1,2)$ domination number of Shell graph and Jewel graph and comb graph.

II. PRELIMINARIES

1) Definition: 2.1 [5]

A (1,2)-dominating set of a graph $G=(V, E)$ is a set S having the property that for every vertex v in V - S there is atleast one vertex in S of distance 1 from v and a vertex in S at a distance atmost 2 from v.
2) Definition: 2.2 [5]

The order of the smallest (1,2)-dominating set of G is called the $(1,2)$ - domination number of G and we denote it by $\Upsilon_{(1,2)}$.

Figure 2.1 : (1,2)-dominating set of $G=\{1,3,5,6\}$, a minimum dominating set of $G=\{1,3,5\}$ and $\Upsilon_{(1,2)}(G)=3$

III. MAIN RESULTS

1) Definition: 3.1 Shell Graph C (n, n-3): [1]

A shell graph is defined as a cycle C_{n} with $n-3$ chords sharing a common end point called the apex. Shell graphs are denoted by C ($\mathrm{n} ; \mathrm{n}-3$), $\mathrm{n} \geq 4$.

Figure 3.1: Shell graph C $(7,4)$
2) Definition: 3.2 Jewel Graph $J_{n}:$ [4]

The Jewel graph J_{n} is a graph with vertex set $\mathrm{V}\left(\mathrm{J}_{\mathrm{n}}\right)=\left\{\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and an edge set $\mathrm{E}\left(\mathrm{J}_{\mathrm{n}}\right)=\left\{\mathrm{ux}, \mathrm{uy}, \mathrm{xy}, \mathrm{xv}, \mathrm{yv}, \mathrm{uu}_{\mathrm{i}}\right.$, $\left.\mathrm{v}_{\mathrm{i}}:: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.

Figure 3.2: Jewel graph J_{4}
3) Definition: 3.3 Comb Graph $P_{n} \Theta K_{1}:$ [5]

Let P_{n} be a Path graph with n vertices. The Comb graph is defined as $P_{n} \odot K_{1}$. It is denoted by $P_{n}{ }^{+}$. It has $2 n$ vertices and $2 n-1$ edges.

Figure 3. 3: Comb graph $\mathrm{P}_{9} \odot \mathrm{~K}_{1}$
a) Theorem :3.1 The (1,2)-domination number of Shell graph $C(n ; n-3), n \geq 4$, is $\Upsilon_{(1,2)}(C(n, n-3))=3$.

Proof: Let G be a Shell graph $\mathrm{C}(\mathrm{n} ; \mathrm{n}-3)$ with n vertices. Label the vertices of the cycle C_{n} as $1,2 \ldots \mathrm{n}$ in clockwise direction. Fix vertex 1 to be the apex of the graph and construct $(\mathrm{n}-3$) chords sharing a common vertex with the apex. Now we claim that the set $\{1,2,3\}$ is the minimum (1,2)-dominating set.
Let $S_{1}=\{1,2\}$. All other vertices of $V-S_{1}$ is of distance one from vertex 1 and of distance two from vertex 2 except the vertex 3 . Hence we need to include vertex 3 in S_{1}. Therefore the minimal (1,2)-dominating set of a Shell graph C ($\mathrm{n}, \mathrm{n}-3$) is $\{1,2,3\}$ and $\Upsilon_{(1,2)}(\mathrm{C}(\mathrm{n}, \mathrm{n}-3))=3$.

Example: 3.1

Figure 3.4: $\mathrm{Y}_{(1,2)}(\mathrm{C}(6,3))=3$
b) Theorem :3.2 The (1,2)-domination number for Jewel graphs $\mathrm{J}_{\mathrm{n}}, \mathrm{n} \geq 1$ is $\Upsilon_{(1,2)}\left(\mathrm{J}_{\mathrm{n}}\right)=2$.

Proof: Let us consider G to be a Jewel graph $\mathrm{J}_{\mathrm{n}}, \mathrm{n} \geq 1$, with vertex set $\mathrm{V}\left(\mathrm{J}_{\mathrm{n}}\right)=\left\{\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and an edge set $\mathrm{E}\left(\mathrm{J}_{\mathrm{n}}\right)=$ $\left\{\mathrm{ux}, \mathrm{uy}, \mathrm{xy}, \mathrm{xv}, \mathrm{yv}, \mathrm{uu}_{\mathrm{i}}, \mathrm{vu}_{\mathrm{i}}:: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Let $\mathrm{S}=\left\{\mathrm{u}, \mathrm{u}_{\mathrm{k}}\right\}$ for some k . Since all the vertices of V-S is at a distance 1 from the vertex u except the vertex v and at a distance 2 from the vertex u_{k} except v. Here v is of distance 1 from the vertex u_{k} and at a distance 2 from the vertex u. Therefore the minimum (1,2)-dominating set of a Jewel graph is $\left\{\mathrm{u}, \mathrm{u}_{\mathrm{k}}\right\}$ and $\mathrm{Y}_{(1,2)}\left(\mathrm{J}_{\mathrm{n}}\right)=2$.

Example: 3.2

Figure 3.5: $\mathrm{Y}_{(1,2)}\left(\mathrm{J}_{4}\right)=2$
c) Theorem :3.3 The (1,2)-domination number for Comb graphs $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{l}, \mathrm{n}>2$ is $\mathrm{Y}_{(1,2)}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{l}\right)=\mathrm{n}$.

Proof: Lest G be a Comb graph $\operatorname{Pn} \odot \mathrm{K}_{l}, \mathrm{n}>2$. Labelling the vertices of the path as $\{1,2,3 \ldots \mathrm{n}\}$ from left to right and the pendant vertices as $\{\mathrm{n}+1, \mathrm{n}+2 \ldots 2 \mathrm{n}\}$ from left to right. Let us generate the minimum (1, 2)-dominating set S of a Comb graph by an algorithm explained below,

- Step 1: Since the vertex 1 is at distance 1 from vertex $\mathrm{n}+1$ and at a distance 2 from vertex $\mathrm{n}+2$ and also the vertex 2 is at a distance 1 from $\mathrm{n}+2$ and at a distance 2 from the vertex $\mathrm{n}+1$. We conclude the minimum (1,2)-dominating set for vertices 1 and 2 is $S_{1}=\{n+1, n+2\}$.
- Step 2: Also if $\mathrm{S}_{2}=\{1,2\}$ dominates $\mathrm{V}_{2}=\{\mathrm{n}+1, \mathrm{n}+2,3\}$ but $(\mathrm{n}+3)$ has to be in S_{2} as it does not have a vertex at a distance one from S_{2}. Therefore either $S_{2}=\{1,2, n+3\}$ dominate $V_{2}=\{n+1, n+2,3\}$ or $S_{2}=\{1,2,3\}$ dominates $V_{2}=\{n+1, n+2, n+3\}$. And concluding the set S_{2} is the minimum (1,2)-dominating set of V_{2}.
On continuing the same procedure as above upto the $n^{\text {th }}$ vertex and generating the final (1,2)-dominating set as $S_{n}=\{n+1, n+2, \ldots$, $n+(n-1), 2 n\}$ and $V_{n}=\{1,2, \ldots, n-1, n\}$. And we see that the set S_{n} is the minimum (1,2)-dominating set of the set V_{n}. At the $n^{\text {th }}$ step we get $V=S_{n} U V_{n}$. The set S_{n} is considered as the minimum (1,2)-dominating set S of Comb graph G.

Example: 3.3

Figure 3.6: $\mathrm{Y}_{(1,2)}\left(\mathrm{P}_{5} \odot \mathrm{~K}_{I}\right)=5$

IV. CONCLUSION

The problem of finding $(1,2)$ domination number is solved for Shell graph, Comb graph and Jewel graph and the $(1,2)$ domination numbers of the corresponding graphs are determined.

REFERENCES

[1] S.Abhirami, R.Vikramaprasad and R.Dhavaseelan, Even Sum Cordial Labeling for Some New Grap, IJMET, Vol 9, Issue ,2018.
[2] A.Alfred Leo,R.Vikramaprasad, More Results on Divided Square Difference Cordial Graphs, IJSR,ISSN No :2279-543X.
[3] K.A.S. Factor and L.J. Langley, A characterization of Connected (1; 2)-domination graphs of tournaments, AKCE Int. J Graphs Comb 8(1), 51-62(2011).
[4] K.A.S. Factor and L.J. Langley, An introduction to (1,2)-domination graphs.Congr.Numer.199,33-38(2009).
[5] Murugesan N. and Deepa S. Nair, (1,2) - domination in Graphs, J. Math. Comput. Sci., Vol.2, 2012, No.4, 774-783.
[6] Sandra Hedentniemi and Stephen T. Hedetniemi , Secondary domination in graphs, AKCE J. Graphs. Combin., 5, No. 2 (2008), pp. 103-115 .

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

