

3 XI November 2015

www.ijraset.com Volume 3 Issue XI, November 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
279

An Effective Deadlock Detective Mechanism For
Multithreaded Programs

T.Ramar1, N.Narayanan Prasanth2

1PG Scholar, 2Assistant Professor, National College of Engineering
Maruthakulam, Tirunelveli, Tamilnadu

Abstract—In a Multithreaded environment, deadlock bugs may occur at any stage of the process. These bugs are reported to the
users in the form of warnings and all the warnings are not real deadlocks. Existing techniques probability ratio to find deadlocks
from warnings are very low. In this paper we proposed an effective NSA algorithm to identify the occurrence of deadlocks under
various situations. Result shows proposed algorithm’s deadlock detection ratio from warning is high compared to existing
techniques.
Keywords—Deadlock, Thread, Multithreaded Environment,Bugs

I. INTRODUCTION

Deadlocks are severe concurrency bugs in a multithreaded environment[3]. They stop their program executions, it must be identified
and rectified is important one. Different kinds of deadlock avoidance techniques are available there. But those techniques are cannot
prevent all the deadlock bugs. Still it is a very big challenge in a real world. In this paper we study the real deadlock probability ratio
will be very high. Deadlock is when two threads are executing at a same time, each one request others resources. Existing scenario
reports real deadlock probability will be very low from the warnings. In that scenario thread will get suspended easily it is called as
thrashing. It is proven that some warnings are real deadlock. In existing technique thread involved in a deadlock warning gets
suspended. Another approach observes that all the threads involving in a deadlock should synchronize their execution steps not only
at their deadlocking sites. All the threads will be suspended, only a necessary condition to triggering a deadlock
Existing techniques[5] (deadlock fuzzer, magic scheduler) report deadlock confirmation probability will be low. Once a deadlock is
triggered, if all threads involving in a deadlock circularly wait for one another to release a certain locks. In Predictive deadlock
detection technique, real deadlocks are could not be isolated.JPF is used to detect the concurrency bug but it suffers from severe
scalability problems. Gadara is used to avoiding a deadlock in offline. But it fails with online. Replay techniques report that how
concurrency bugs can happen.iGoodlock [1] is used to detect potential deadlocks.
This paper ensures security which will be provided by an NSA algorithm. NSA is a novel barrier based randomized testing
scheduler [4] that triggers deadlock with high probabilities. NSA consist of three barriers namely 1.Admittance barrier 2.Satisfaction
barrier 3.Need barrier. Where each barrier is a set of sites, one for each thread involved in a given cycle. Threads are normally
entered into the admittance barrier, that admittance barrier begins and monitors the current thread if the thread releases the existing
program/function then the admission barrier moves to the next thread. The admittance barrier, for a thread represents a site where the
thread acquires its very first direct lock or its very first indirect lock along the run. This paper main contribution is theoretical
guarantee of NSA, which shows that if a given warning is a real deadlock.2.Satisfaction barrier-Before a thread reaches its
satisfaction barrier site, thrashing it may occurred. It blocks this thread from acquiring an indirect lock being held by a suspending
thread. NSA algorithm aims to divide the traces of the threads involved in the given cycle c into segments separated by barriers.
Thrashing will be contained within each segment instead of across multiple segments, thereby reducing the potential of thrashing
occurrences. Then the satisfaction barrier act on it to trigger the blog, if it moves successfully then it is not a real deadlock. Then the
satisfaction barrier act on it to trigger the blog, if it moves successfully then it is not a real deadlock. 3. Need barrier-The Need
barrier site of each thread can be directly extracted from the given warning. The continuously function has been acquired the locks
in the one of its thread and releasing time of that particular function is locked in the thread is formed to be a cycle. The suspending
threads involving in a cycle at this barrier only represents a need barrier after the confirmation run has manifested into a real
deadlock at the corresponding sites. Need barrier checks if both the block contains same program/function, then it confirms the blog
is a real deadlock.
Finally a deadlock is triggered which is known as a real deadlock. In future work deadlock removal confirmation techniques [1]

www.ijraset.com Volume 3 Issue XI, November 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
280

were implemented. It is used to reduce the deadlock and improving our system performance. Noises are injected during their
program execution. Deadlock occurrence checking time will be minimized by using NSA algorithm.NSA is able to scale up to
confirm deadlocks in programs with many threads[3].

II. SYSTEM ARCHITECTURE

Access the rights to control the executions in the network session. The deadlocks may occur in the database also, user needs the
rights to control the threads in that particular field. Service provider accesses the rights from the authority holder. System waiting
for a dead lock warning, our proposed system going to check the warning is real deadlock warning or some other execution
problem. More than one threads runs simultaneously [3] and there is more chance for deadlocks. The normal thread function is
acquires the program and release it before the next program get in to the thread. If the function/program is too large, then it takes
some time to execute it. The algorithm first monitors the confirmation run against the Admittance barrier ABr(c) followed by the
Satisfaction barrier SBr(c) and finally the Need barrier NBr(c). Refer to the site corresponding to a thread t in three barriers ABr(c),
SBr(c), and NBr(c) as ABr(c, t), SBr(c, t), and NBr(c, t), respectively. NSA schedules a program to traverse each barrier in cohort
and one after another. Finally real deadlock will be triggered.

Fig. 1 System Architecture diagram

There are two types of event related to deadlock confirmation:
Acquire (t, m) and release (t, m), meaning that a thread t acquires a lock m and releases a lock m.The thread t1 firstly acquires the
lock k at site s01, and then releases it at site s02. Then, t1 acquires the lock s at site s03. Before releasing s, t1 holds the lock n for a
brief period at sites s04 and s05 followed by acquiring three more locks p, m, and n at sites s06, s07, and s08, respectively. Finally,
t1 releases all its locks from site s09 to site s12.The thread t2 acquires the lock s at site s13 and then Releases it at site s14. Then, t2
acquires the locks n and p at sites s15 and s16 and releases them at sites s17 and s18.

 START

Authorizatio
n

Triggering

END

NO

YES

Waiting for deadlock
warning

 Admittance barrier

 Satisfaction barrier

 Need barrier

www.ijraset.com Volume 3 Issue XI, November 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
281

A. Deadlock Example

Schedule 1 triggers the deadlock: Suppose that thread t2 is locating at site S15 before acquiring the lock n,and t1 executes all the
operations from site s01 to site s07.Thus, t1 is holding the lockset {s, p,m}. Now, t2 acquires the lock n at site s15. However, t2
cannot further acquire the lock p at site s16 because t1 is holding p. Schedule 1 then switches to guide t1 to acquire n at site s08, but
it fails as t2 is holding the lock n. As such, a real deadlock occurs. If the confirmation run is scheduled as schedule 1, the n
Randomized scheduler successfully triggers the deadlock. Otherwise RS may miss to trigger the deadlock.
Schedule 2, right after t2 has released the lock s at site s14; t1 acquires the lock k and then releases it. Before t1 proceeds further, t2
completes its execution. Following Schedule 2 does not trigger the deadlock firstly suspends t2 once t2 is locating at site s16 (i.e.,
after t2 has acquired the lock n at site s15). However, when t1 is locating at s04, the thread t1 has to wait for t2 to release the lock n.
Now, RS is suspending t2, and t2 is blocking t1: thrashing occurs. To resolve thrashing, RS has to resume t2. After t2 has acquired
the lock p, there is no way to trigger the deadlock indicated by c0 anymore. Systematic Scheduler (These scheduler aim is to detect
concurrency bugs. But their ability to expose deadlocks is very low.

III. PROPOSED ALGORITHM

In this section we describe an NSA Algorithm. The algorithm first monitors the confirmation run against the admittance barrier
ABr(c) followed by the satisfaction barrier SBr(c) and finally need barrier NBr(c).we refer to the site corresponding to a thread t in
three barriers ABr(c), SBr(c),and NBr(c) as ABr(c,t),SBr(c,t) and NBr(c,t),respectively. Algorithm 1 summarizes the main NSA
algorithm. It takes a program p and a deadlock warning c as inputs. At lines 1-3, it initializes the execution state of the confirmation
run. For each thread t in the warning c, it assigns ABr(c,t) to the variable CurBr, and initializes two maps Request and Lockset as
empty sets. The set Enable (lines 4 and 22) models the set of active threads in the confirmation run. If Enable is non-empty (line 5),
the algorithm fetches the next statement (denoted by stmt). It handles stmt by distinguishing three cases:

A. Case 1
If stmt is neither a lock acquisition/release event nor a statement executed by any thread involving in c, Algorithm 1 simply executes
stmt. For instance, all memory accesses fall into this case.

B. Case 2
If stmt is an acquire(t,m) event, where t is a thread involving in c,the algorithm updates its exection state by associating t with m,and
keeps the association relation in Request. It then checks whether stmt is at the barrier under monitoring for the thread t via the
function check-barrier. If this is the case, Algorithm 1 pushes stmt back to the statement execution queue, and suspends t by
removing it from the set Enable. For instance, in The running example, if stmt is acquire (t1, s) occurring at site S03 which is the
ABr site of t1, NSA sets Request (t1) to s@s03 and invokes check Barrier (acquire (t1, s)@s03), which returns true. Thus, NSA
removes t1 from Enable because the function check barrier has suspended t1 without executing acquire (t1, s). Otherwise, Algorithm
1 executes stmt and updates the execution state accordingly. Otherwise, Algorithm 1 executes stmt and updates the execution state
accordingly. For instance if stmt is acquire (t1, k) at site s01, the stmt is directly executed and Lockset (t1) is updated to include the

www.ijraset.com Volume 3 Issue XI, November 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
282

Lock k.

C. Case 3
If stmt is a release(t,m) event, the algorithm removes the lock m from the set Lockset for the thread t,and executes stme. For
instance,if the stmt is the release(t1,k) event occuring at site s02,NSA executes it and removes the lock k from Lockset(t1).
Next if the set Enable becomes empty, the algorithm either resolves thrashing or reports an unexpected but real deadlock. Otherwise
it iterates the above procedure the next statement.The function checkbarrier is core part of the Algorithm.It takes a lock acquistion
event as an input.It checks whether the given site s is the site for the thread t at the barrier under monitoring. If so the algorithm
suspends t.Next itchecks whether all the threads involving in c have been suspended at their corresponding sites indicated by the
same barrier. If this is also the case and the barrier is need barrier,the algorithm checks whether the given warning is manifested into
a real deadlock via the function checkfordeadlocks.
At line 39, the algorithm advances to monitor the barrier following the current barrier via the function Next (CurBr(c,t)).that is for
each thread t in c,the variable CurBr(t) is updated from ABr(c,t) or from SBr(c,t) to NBr(c,t).Finally function check Barrier returns a
Boolean value, indicating whether the site(e) is a site in the barrier under monitoring.
For instance, when check Barrier is called from the example in Case 2 (check barrier (acquire (t1, s)@s03)),ASN finds that the site
s03 equals to CurBar (t1) whose value is ABr(c0,t1). It then suspends t1 (line 33). Suppose that the thread t2 is also locating at site
s13 (ABr (c0, t2)). Hence, both threads are locating at their ABr sites, which are not their NBr sites. NSA does not invoke
checkforDeadlockðcÞ (lines 35-37). Next, NSA updates CurBr(t1) to SBr(c0,t1) and CurBr(c0,t2) to SBr(c0,t2) (line 39).As the site
ABr(c0,t1) is not the site SBr(c0,t1) and the site ABr(c0,t2) is not the site SBr(c0,t2), NSA resumes both threads at line 41.
Note that ABr (c0,t) and SBr(c0,t)for the same thread t may sometimes refer to the same site. If this is the case, NSA skips resuming
t (lines 40-43) after the admittance barrier. For instance, the following execution trace contains a deadlock on locks m and n. Both
the ABr and SBr sites for the thread t3 refer to the first lock acquisition acq (m) at line 01and its NBr site is acq (n) at line 02. The
function checkforDeadlocks checks real deadlock occurrence and, if any, reports the deadlock, which may be different from the
given warning c (lines 53-57), and halts the execution. Compared to existing work, NSA only checks for deadlock occurrences once
instead of checking right before each lock acquisition event. It consumes less time on deadlock checking.

www.ijraset.com Volume 3 Issue XI, November 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
283

NSA Algorithm
For each thread t in threads(c) do
CurBr (t):=ABr(c, t), Request (t):=ø, Lockset (t):= ø,
end for
Enable: =Threads (p)
while Enable≠ ø do
(t, stmt):=the next stmt from a random thread t
if t € Threads(c) ˅ (stmt ≠ acquire ˄ stmt ≠release)
then execute (stmt)
else if stmt = acquire (t, m)@s then
Request (t):=m@s
if Check Barrier (stmt) =true then
push back stmt
Enable: = Enable \ {t}
else execute (stmt)
Lockset (t):=Lockset (t)U{m@s}
end if
else if stmt=release (t, m)@s then
Lockset (t):=Lockset (t)\ {m@s’}
execute (stmt)
end if
if Enable=then
if some threads are suspended then
else Print “A deadlock is triggered”
end if end if
end while
Function check Barrier (Event e)//where e=acquire
(t,m) @s
bar: =CurBr (t)
if site (e) = bar then
suspend (t)
if each thread x in thread(c) at site CurBr(x) then
if the monitoring barrier is the need barrier then
call Checkfordeadlock(c)
end if

for each t’€ threads© do
CurBr (t’):=Next (Cur (Br (t’)) // advance do the next
barrier
if site (e) ≠CurBr (t) then
resume (t)
Enable: =Enable U {t’}
end if end for
return false
end if return true
end if return false
end function
Function checkforDeadlock (cycle c)
If c’=<d1, d2, dk>where di=<ti, Request (ti), Lockset
(ti)> Such that c’ is a cycle then
if c’=c then
Print “The given warning is confirmed into a real
deadlock!” halt!
Else Print “A real deadlock is triggered!” Halt!
end if end if end function

www.ijraset.com Volume 3 Issue XI, November 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
284

IV. RESULT ANALYSIS

Proposed algorithm is implemented using NS2 simulator. It shows how the deadlock occurs & how they are detected. Fig. 2 shows
the list of nodes involved in a process at the current situation.

Fig. 2 Node creation

Fig.3 Node initialization

In fig.3 denoted as how their nodes will be initialized, In this block colour round circles denoted as mobile users whereas green
colour circles are routers, and blue colour circles denoted as gateway. In fig.4 Data will be transmitted between their mobile users
and their gateway through routers.

Fig.4 Transmission of Data between the nodes

 Fig.5 Randomized Deadlock warning in node 10 and 18 the admittance Barrier begins

www.ijraset.com Volume 3 Issue XI, November 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
285

In fig.5 Admittance barrier will be started when two mobile users are changing their place from one to another, if their id will be
synchronized. Deadlock affected nodes are moved to some other place to confirm the Deadlock which is shown in fig. 6. In fig.7
after completion of Admittance barrier if a thread moves to the next thread, before reaching the next, thrashing may occur.
Thrashing leads to suspend the thread easily. If the thread moves successfully, then it is not a real deadlock.

Fig.6 Deadlock affected nodes are moving to some other place to confirm the Deadlock

Fig.7 Need Barrier start to confirm the real deadlock

V. CONCLUSION

NSA algorithm is used to find the occurrence of deadlock under various situations. NSA’s probability ratio of detecting the
deadlock is very high compared to existing algorithms. NSA is able to scale up to confirm deadlocks in programs with many threads
therefore the system performance is much improved under multithreaded environment.

REFERENCES

[1] R. Agarwal, L. Wang, and S.D. Stoller, “Detecting Potential Deadlocks with Static Analysis and Run-Time Monitoring,” Proc. IBM Verification Conf., 2005.
[2] G. Altekar and I. Stoica, “ODR: Output-Deterministic Replay for Multicore Debugging,” Proc. 22nd Symp. Operating Systems Principles(SOSP ’09), pp. 193-

206, 2009.
[3] S. Bensalem and K. Havelund, “Scalable Dynamic Deadlock Analysis of Multi-Threaded Programs,” Proc. First Haifa Int’l Conf. Hardware and Software

Verification and Testing (PADTAD ’05), 2005.
[4] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A Randomized Scheduler with Probabilistic Guarantees of Finding Bugs,” Proc. Architectural

Support for Programming Languages and Operating Systems (ASPLOS XV), pp. 167-178, 2010.
[5] Y. Cai and W.K. Chan, “Magiclock: Scalable Detection of Potential Deadlocks in Large-Scale Multithreaded Programs,” IEEE Trans.Software Eng., vol. 43,

no. 3, pp. 266–281, Mar. 2014.
[6] Y. Cai and W.K. Chan, “MagicFuzzer: Scalable Deadlock Detection for Large-Scale Applications,” Proc. Int’l Conf. Software Eng. (ICSE ’12), pp. 606-616,

2012.
[7] Z.D. Luo, R. Das, and Y. Qi, “MulticoreSDK: A Practical and Efficient Deadlock Detector for Real-World Applications,” Proc. IEEE Int’l Conf. Software

Testing, Verification and Validation (ICST),pp. 309-318, 2011.
[8] C. Flanagan and S.N. Freund, “FastTrack: Efficient and Precise Dynamic Race Detection,” Proc. SIGPLAN Conf. Programming Language Design and

Implementation (PLDI ’09), pp. 121-133, 2009.
[9] M. Grechanik, B.M.M. Hossain, and U. Buy, “Testing Database- Centric Applications for Causes of Database Deadlocks,” Proc. Sixth Int’l Conf. Software

Testing, Verification and Validation (ICST),pp. 174-183, 2013.
[10] M. Grechanik, B.M.M. Hossain, U. Buy, and H. Wang, “Preventing Database Deadlocks in Applications,” Proc. Ninth Joint Meeting on Foundations of

Software Eng. (FSE), pp. 356-366, 2013.

