

9 VI June 2021

https://doi.org/10.22214/ijraset.2021.35753

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue VI Jun 2021- Available at www.ijraset.com

3621 ©IJRASET: All Rights are Reserved

Self-Driving Car using Deep-Q-Networks
Rajath C V1, Yugant Soni2, Santhosh B3

1, 2, 3Department of Telecommunication Engineering, Dayananda Sagar College of Engineering 1rajath2608@gmail.com

Abstract: A autonomous car is also called a self-driving car or a robot car. As for the history of self-driving cars, radio
technology was used to control the tests, which began in 1920, and later in 1950, the tracks were finally put in place. The
present-day individual is habituated to automation technology and the use of robotics in areas such as agriculture, medication,
transportation, IT industry, etc. In the recent decades, the automotive sector has come to the forefront of researching private car
technologies.
The independent Level-3 standard was out in 2020. Everyday automotive technology researchers solve challenges. The prime
intention of the project is to create a self-driving car using Deep-Q-Networks, thus enabling the car to make decisions based on
the spontaneously occurring events.
Independent vehicles require data and are regularly updated, therefore IoT and AI can assist in allocating device data to the
machine.
Keywords: Autonomous vehicles, Deep-Q-Network, Reinforcement Learning, Markov Decision Process, Bellman Equation

I. INTRODUCTION
Technology has always been striving to make human lives simpler from the very beginning of time. The very objective of
technology is to make human lives comfortable, effortless and straightforward along with improving the quality of human lives.
Travel or quick and personal transport is one such area which is extremely important to help achieve this goal. Development and
enhancement of motor vehicles began from as early as the 17th century and has been constantly improving in multiple areas
including comfort, performance and technological expertise. Self-driving cars have always been an area of tremendous interest and
engineers have been working on it for many years.
These autonomous or self-driving cars would make technology ever so closer to reaching its ultimate goal that is improved quality
and simpler human life.
Self-driving or autonomous cars are those which are adept at recognizing and distinguishing its surrounding and driving carefully
and securely with minimal human input or even in the absence of any input from the driver which means that they can successfully
transport people or goods from their source to destination safely. The driving agent, which is trained using Deep-Q-Networks along
with Reinforcement learning, employs reward and punishment signals to train agents.

II. LITERATURE SURVEY
A. Deep CNN-based Real Time Traffic Light Detector for Self-Driving Vehicles: Zhenchao Ouyang et al [1]
This paper talks about using a model which identifies all potential traffic lights and uses a Convolution Neural Network (CNN) to
categorize the results attained. The proposed model was able to achieve a high accuracy of about 99% by incorporating the detector
module with on NVidia Jetson TX1/TX2. The paper talks about how the data set consisting of the traffic lights was obtained using
Heuristic ROI detector and proposal based detection model, entering the data set into CNN models such as AlexNet/GoogleNet.

B. Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning for a Simulated Self-Driving Agent: Jieneng Chen et
al [2]

This paper talks about methods of simulating the different behaviors of the human brain using the modified DRQN model which is
based on the deep-Q-network architecture. It talks about how the driving agent was trained to respond only to visual signals. The
project used Reinforcement learning where the actions included left, right, going forward, going backwards and braking, and when
the driving agent performs the required task, it sends reward signals, however when it fails to perform the task as expected it sends
punishment signals. This paper proposes a deep recurrent reinforcement learning network to resolve problems encountered in the
simulation. But this brain inspired model can perform better and provide more stability with the use of trial and error method.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue VI Jun 2021- Available at www.ijraset.com

3622 ©IJRASET: All Rights are Reserved

C. Robust Lane Detection Using Multiple Features: Tejas Gupta et al [3]
This paper talks about the use of monocular RGB images as a method for ego-lane detection. It also talks about an ego-lane
detection algorithm which executes equally well even if the path is curvy, low lit or filled with obstructions. The goal is to employ
numerous low-level visual features in order that the detector doesn’t fail when an incorrect result is given by a visual feature. An
estimator is utilized for renewing the model after each step so as to not extract wrong or noisy images. Stress also impacts muscles.
The proposed method’s performance is evaluated on the KITTI dataset. A unique assessment metric is proposed that is
comparatively more apt for ascertaining lane detection outcomes.

D. Detecting Unexpected Obstacles for Self-Driving Cars: Fusing Deep Learning and Geometric Modelling: Sebastian Ramos et
al [4]

This paper proposes a replacement deep learning-based obstacle detection framework. The paper talks about a type of convolutional
network which is employed to forecast the pixel-wise semantic classification of Free-space, unexpected obstacles on the path. The
paper talks about the introduction of a deep learning-based approach to spot minute and unpredictable obstructions. The paper
demonstrates a way in which CNNs can be used to simplify information present in the training set and thereby solve one of their
major setbacks: managing outliers and therefore the “open world”. Thus new and earlier unnoticed objects can be effectively
managed and an appropriate background class was modelled.

III. METHODOLOGY
A. Software used
1) Python: Python is an open source high level language which can be used for web development, data analytics, data

visualization, machine learning etc
2) Unity Simulator: The simulator used is the Unity Simulator for self-driving cars. Unity is a real time 3D rendering platform

used to efficiently create simulation environments. The fundamental elements of the simulation environment are Vehicle
dynamics such as friction experienced by the car, Dynamic elements like pedestrians or other cars and Parameters such as
weather conditions, trees and so on.

B. Packages used to build the stress detector
1) NumPy: Python has a module called NumPy. It is a multidimensional array object library with a set of array processing routines.
2) Torch: Torch is python module that provides Tensor computation with stronger GPU capabilities. It includes some of the

components such as Torch.nn and Torch.autograd which is implemented
3) OS: OS package is used in Python to interact with the operating system.

C. Reinforcement Learning
A field in machine learning which is focused on making an agent take intelligent decisions, in the environment they are placed in, in
the best way possible so that the agent can reach a state where it gets the maximum reward as opposed to ending up in a state that
gives the agent the least reward. This reward can be positive or negative and depends on the state that the agent is in, and the agent
always strives to reach the region of maximum reward and avoid the state of minimum reward at all costs.

D. Markov Decision Process
The Markov Decision Process, in reinforcement learning, is used to deal with State transitional probabilities. A state, in
reinforcement learning, refers to the present position of the training agent with respect to its environment. The agent while
undergoing the state transition, always has the chance or probability of moving to another direction completely, which is referred to
as State Transitional Probability. The Markov Property states that the present state of the object is not related to the previous state of
the agent, meaning the current state the agent has reached does not depend on the state the agent was present in, before transitioning
to this state.

E. Bellman Equation
The Bellman Equation is a mathematical enhancement or optimization technique. The appropriate Bellman equation can be formed
by adding new state variables to the equation. The first decision to be made for using the Bellman equation is the type of objective
function required. For the proposed method, the objective function is to maximize the reward obtained by the driving agent. the
Bellman equation provides the optimal solution which is basically a rule which decides what action or values the control variables
should hold for each state or when the state changes.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue VI Jun 2021- Available at www.ijraset.com

3623 ©IJRASET: All Rights are Reserved

F. Deep Q Learning
To help AI agents in operating in environments with distinct action spaces, Deep Q-Learning is used. It uses Q-values to provide the
desired results. The Q value is the value of the respective action-state pair. A memory table is created in Q-learning to store Q-
values for all conceivable combinations of the state and the related action. This value is fed into the Deep Q Learning Network, and
it gives the required action to be taken, combining the reward from the current action-state combination with the greatest Q value at
the following state.

IV. IMPLEMENTATION

Fig. 1 Deep-Q-Network using Reinforcement Learning

The implementation is performed by training the driving agent by employing Deep-Q-Networks using Reinforcement Learning. The
agent performs some actions in the environment, based on which it attains new states and corresponding rewards. In order to show
the working of the Deep-Q-Network algorithm, we first keep an empty black screen, which is our map, as seen in Fig.2, and make
the driving agent move around the map. The agent moves around the map in order to familiarize itself with its surroundings.

Fig. 2 The empty map for the agent to travel

Once the agent is able to traverse back and forth through the entire map, we begin to draw obstacles around the black screen as
illustrated in Fig. 3. Once the agent comes in contact with these obstacles it decides whether it should turn 20 degrees to the left or
20 degrees to the right or continue to not turn at all. In order to make sure that the agent learns from the mistakes it makes we give
rewards and penalties. The penalties are -5 whenever the agent runs into an obstacle created by us and -1 if the agent gets further
away from the objective. The agent is given a reward of +1 if it gets closer to the objective. We provide five sensors to our agent
which include sensor red, yellow and blue, and the other two are positive and negative orientations which tells us about the degree
of the agent.

Fig. 3 The map with obstacles to train the agent

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue VI Jun 2021- Available at www.ijraset.com

3624 ©IJRASET: All Rights are Reserved

In the next step we connect our trained agent into the Unity simulator. In order to connect it to the Unity simulator and make our
agent familiar to the environment provided by Unity, we use our three sensors to get the images of our surroundings for every
position the car is in. Hence our three sensors provide us images of what is in front of the agent, left of the agent and to the right of
the agent. The orientation sensor provides us information about the degree position of the car for each position. Hence the dataset
consists of images which are captured by our sensor and also a CSV file which consists of the steering angle, breaking and the speed
which is collected by manually driving the car around the car around the Unity simulator.
This data collected is now processed using the Deep-Q network algorithm and a model file is created .Once the model file is created,
we have to connect the model file to the simulator and the car will run on its own. In order to connect to the simulator we use
Anaconda. It is a tool that is used to run python codes. Anaconda is very effective as it allows us to run python libraries and
dependencies with great ease. Once the dependencies and libraries are installed using anaconda, the Unity simulator is started, and
the car begins to run autonomously by the trained model.

V. RESULT

Fig. 4 Fully trained agent driving as required

Fig. 4 shows the agent running smoothly in the Unity simulation environment. It is also seen that the agent has been successfully
linked to the Unity simulator. The agent successfully performs all the required actions such as following the lanes and avoiding
obstacles as it goes forward in the environment. It is able to maneuver through the simulation environment, and thus receive the
positive rewards. We can notice that once the dataset has been collected and the Deep-Q-Learning algorithm is applied to it, the
agent is able to travel around the environment simultaneously and it can perform behavioral cloning with a high level of accuracy.

Fig. 6 Graph showing reward obtained for each step

Fig. 6 shows the rewards obtained by the driving agent for every action it performed. It is seen from the graph that the agent
receives a reward of +1 whenever it gets closer to the objective and -1 when it moves farther away. The results becomes stable and
consistent after 1500 time steps.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue VI Jun 2021- Available at www.ijraset.com

3625 ©IJRASET: All Rights are Reserved

VI. CONCLUSION
Every year, around 10 trillion kilometers are being covered using automobiles, and people spend billions of hours behind the wheel,
which they could spend on other important things. Millions of people lose their life, every year, due to road accidents caused by
human errors. All of this can be eliminated by employing self-driving cars, which saves, not only time, but also lives of millions of
people.
The project shows that the agent was successfully trained to drive in the environment created in the Unity simulator. The training
was done successfully by using Reinforcement learning and Deep-Q-Networks. Various equations and techniques have been
applied, to help the self-driving automobile make better decisions. The agent recognizes the reward and punishment signals given to
it during the course of the training. The reward points are collected in a batch, which the agent consults while making a decision.
The guiding systems make use of neural networks to mimic the processes of biological decision-making systems.

REFERENCES
[1] Zhenchao Ouyang, Jianwei Niu, Yu Liu, Mohsen Guizani, “ Deep CNN-based Real-time Traffic Light Detector for Self-driving Vehicles”, IEEE

Transactions on Mobile Computing, Volume: 19 , Issue: 2 , Feb. 1 2020
[2] Jieneng Chen, Jingye Chen, Ruiming Zhang and Xiaobin Hu, “Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning for a Simulated

Self-Driving Agent”, Front. Neurorobot., 28 June 2019.
[3] Tejus Gupta, Harshit S. Sikchi, Debashish Charkravarty, “Robust Lane Detection Using Multiple Features”, 2018 IEEE Intelligent Vehicles Symposium (IV)
[4] Sebastian Ramos ; Stefan Gehrig ; Peter Pinggera ; Uwe Franke ; Carsten Rother, “Detecting Unexpected Obstacles for Self-Driving Cars:Fusing Deep

Learning and Geometric Modeling”, 2017 IEEE Intelligent Vehicles Symposium (IV)
[5] Wuttichai Vijitkunsawat, Peerasak Chantngarm, “Comparison of Machine Learning Algorithm’s on Self-Driving Car Navigation using Nvidia Jetson Nano”

2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)
[6] A N Aneesh, Linu Shine, R Pradeep, V Sajith, “Real-time Traffic Light Detection and Recognition based on Deep RetinaNet for Self Driving Cars” 2019 2nd

International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT)
[7] G. Meera Gandhi, Salvi, “Artificial Intelligence Integrated Blockchain For Training Autonomous Cars” 2019 Fifth International Conference on Science

Technology Engineering and Mathematics (ICONSTEM)
[8] Takafumi Okuyama, Tad Gonsalves, Jaychand Upadhay, “Autonomous Driving System based on Deep Q Learning” 2018 International Conference on

Intelligent Autonomous Systems (ICoIAS)
[9] Yang Guan, Shengbo Eben Li, Jingliang Duan, Wenjun Wang, Bo Cheng, “Markov probabilistic decision making of self-driving cars in highway with random

traffic flow: a simulation study”, Journal of Intelligent and Connected Vehicles, 18 October 2018.
[10] Abdur R. Fayjie, Sabir Hossain, Doukhi Oualid, Deok-Jin Lee, “Driverless Car: Autonomous Driving Using Deep Reinforcement Learning in Urban

Environment” 2018 15th International Conference on Ubiquitous Robots (UR)
[11] Michael G. Bechtel, Elise Mcellhiney, Minje Kim, Heechul Yun, “DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car”, 2018 IEEE 24th

International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)
[12] Michael Treml , José Arjona-Medina, Thomas Unterthiner, Rupesh Durgesh, Felix Friedmann, Peter Schuberth, Andreas Mayr, Martin Heusel, Markus

Hofmarcher, Michael Widrich, Ulrich Bodenhofer, Bernhard Nessler and Sepp Hochreiter, “Speeding up Semantic Segmentation for Autonomous Driving”,
29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

