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Abstract: A autonomous car is also called a self-driving car or a robot car. As for the history of self-driving cars, radio 
technology was used to control the tests, which began in 1920, and later in 1950, the tracks were finally put in place. The 
present-day individual is habituated to automation technology and the use of robotics in areas such as agriculture, medication, 
transportation, IT industry, etc. In the recent decades, the automotive sector has come to the forefront of researching private car 
technologies.  
The independent Level-3 standard was out in 2020. Everyday automotive technology researchers solve challenges. The prime 
intention of the project is to create a self-driving car using Deep-Q-Networks, thus enabling the car to make decisions based on 
the spontaneously occurring events.  
Independent vehicles require data and are regularly updated, therefore IoT and AI can assist in allocating device data to the 
machine. 
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I. INTRODUCTION 
Technology has always been striving to make human lives simpler from the very beginning of time. The very objective of 
technology is to make human lives comfortable, effortless and straightforward along with improving the quality of human lives. 
Travel or quick and personal transport is one such area which is extremely important to help achieve this goal. Development and 
enhancement of motor vehicles began from as early as the 17th century and has been constantly improving in multiple areas 
including comfort, performance and technological expertise. Self-driving cars have always been an area of tremendous interest and 
engineers have been working on it for many years.  
These autonomous or self-driving cars would make technology ever so closer to reaching its ultimate goal that is improved quality 
and simpler human life.  
Self-driving or autonomous cars are those which are adept at recognizing and distinguishing its surrounding and driving carefully 
and securely with minimal human input or even in the absence of any input from the driver which means that they can successfully 
transport people or goods from their source to destination safely. The driving agent, which is trained using Deep-Q-Networks along 
with Reinforcement learning, employs reward and punishment signals to train agents. 
 

II. LITERATURE SURVEY 
A. Deep CNN-based Real Time Traffic Light Detector for Self-Driving Vehicles: Zhenchao Ouyang et al [1] 
This paper talks about using a model which identifies all potential traffic lights and uses a Convolution Neural Network (CNN) to 
categorize the results attained. The proposed model was able to achieve a high accuracy of about 99% by incorporating the detector 
module with on NVidia Jetson TX1/TX2. The paper talks about how the data set consisting of the traffic lights was obtained using 
Heuristic ROI detector and proposal based detection model, entering the data set into CNN models such as AlexNet/GoogleNet. 

B. Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning for a Simulated Self-Driving Agent: Jieneng Chen et 
al [2] 

This paper talks about methods of simulating the different behaviors of the human brain using the modified DRQN model which is 
based on the deep-Q-network architecture. It talks about how the driving agent was trained to respond only to visual signals. The 
project used Reinforcement learning where the actions included left, right, going forward, going backwards and braking, and when 
the driving agent performs the required task, it sends reward signals, however when it  fails to perform the task as expected it sends 
punishment signals. This paper proposes a deep recurrent reinforcement learning network to resolve problems encountered in the 
simulation. But this brain inspired model can perform better and provide more stability with the use of trial and error method. 
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C. Robust Lane Detection Using Multiple Features: Tejas Gupta et al [3] 
This paper talks about the use of monocular RGB images as a method for ego-lane detection. It also talks about an ego-lane 
detection algorithm which executes equally well even if the path is curvy, low lit or filled with obstructions. The goal is to employ 
numerous low-level visual features in order that the detector doesn’t fail when an incorrect result is given by a visual feature. An 
estimator is utilized for renewing the model after each step so as to not extract wrong or noisy images. Stress also impacts muscles. 
The proposed method’s performance is evaluated on the KITTI dataset. A unique assessment metric is proposed that is 
comparatively more apt for ascertaining lane detection outcomes. 

D. Detecting Unexpected Obstacles for Self-Driving Cars: Fusing Deep Learning and Geometric Modelling: Sebastian Ramos et 
al [4] 

This paper proposes a replacement deep learning-based obstacle detection framework. The paper talks about a type of convolutional 
network which is employed to forecast the pixel-wise semantic classification of Free-space, unexpected obstacles on the path. The 
paper talks about the introduction of a deep learning-based approach to spot minute and unpredictable obstructions. The paper 
demonstrates a way in which CNNs can be used to simplify information present in the training set and thereby solve one of their 
major setbacks: managing outliers and therefore the “open world”. Thus new and earlier unnoticed objects can be effectively 
managed and an appropriate background class was modelled. 

III. METHODOLOGY 
A. Software used 
1) Python: Python is an open source high level language which can be used for web development, data analytics, data 

visualization, machine learning etc 
2) Unity Simulator: The simulator used is the Unity Simulator for self-driving cars. Unity is a real time 3D rendering platform 

used to efficiently create simulation environments. The fundamental elements of the simulation environment are Vehicle 
dynamics such as friction experienced by the car, Dynamic elements like pedestrians or other cars and Parameters such as 
weather conditions, trees and so on.  

B. Packages used to build the stress detector 
1) NumPy: Python has a module called NumPy. It is a multidimensional array object library with a set of array processing routines. 
2) Torch: Torch is python module that provides Tensor computation with stronger GPU capabilities. It includes some of the 

components such as Torch.nn and Torch.autograd which is implemented 
3) OS: OS package is used in Python to interact with the operating system. 

C. Reinforcement Learning 
A field in machine learning which is focused on making an agent take intelligent decisions, in the environment they are placed in, in 
the best way possible so that the agent can reach a state where it gets the maximum reward as opposed to ending up in a state that 
gives the agent the least reward. This reward can be positive or negative and depends on the state that the agent is in, and the agent 
always strives to reach the region of maximum reward and avoid the state of minimum reward at all costs.  

D. Markov Decision Process 
The Markov Decision Process, in reinforcement learning, is used to deal with State transitional probabilities. A state, in 
reinforcement learning, refers to the present position of the training agent with respect to its environment. The agent while 
undergoing the state transition, always has the chance or probability of moving to another direction completely, which is referred to 
as State Transitional Probability. The Markov Property states that the present state of the object is not related to the previous state of 
the agent, meaning the current state the agent has reached does not depend on the state the agent was present in, before transitioning 
to this state. 

E. Bellman Equation 
The Bellman Equation is a mathematical enhancement or optimization technique. The appropriate Bellman equation can be formed 
by adding new state variables to the equation. The first decision to be made for using the Bellman equation is the type of objective 
function required. For the proposed method, the objective function is to maximize the reward obtained by the driving agent. the 
Bellman equation provides the optimal solution which is basically a rule which decides what action or values the control variables 
should hold for each state or when the state changes. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue VI Jun 2021- Available at www.ijraset.com 
     

 
3623 ©IJRASET: All Rights are Reserved 

 

F. Deep Q Learning 
To help AI agents in operating in environments with distinct action spaces, Deep Q-Learning is used. It uses Q-values to provide the 
desired results. The Q value is the value of the respective action-state pair. A memory table is created in Q-learning to store Q-
values for all conceivable combinations of the state and the related action. This value is fed into the Deep Q Learning Network, and 
it gives the required action to be taken, combining the reward from the current action-state combination with the greatest Q value at 
the following state. 

IV. IMPLEMENTATION 
 

 
 
 
 
 
 

Fig. 1 Deep-Q-Network using Reinforcement Learning 
 

The implementation is performed by training the driving agent by employing Deep-Q-Networks using Reinforcement Learning. The 
agent performs some actions in the environment, based on which it attains new states and corresponding rewards. In order to show 
the working of the Deep-Q-Network algorithm, we first keep an empty black screen, which is our map, as seen in Fig.2, and make 
the driving agent move around the map. The agent moves around the map in order to familiarize itself with its surroundings.  

 
 

 
 
 
 
 
 
 
 

Fig. 2 The empty map for the agent to travel 
 

Once the agent is able to traverse back and forth through the entire map, we begin to draw obstacles around the black screen as 
illustrated in Fig. 3. Once the agent comes in contact with these obstacles it decides whether it should turn 20 degrees to the left or 
20 degrees to the right or continue to not turn at all. In order to make sure that the agent learns from the mistakes it makes we give 
rewards and penalties. The penalties are -5 whenever the agent runs into an obstacle created by us and -1 if the agent gets further 
away from the objective. The agent is given a reward of +1 if it gets closer to the objective. We provide five sensors to our agent 
which include sensor red, yellow and blue, and the other two are positive and negative orientations which tells us about the degree 
of the agent.  

 
 

 
 
 
 
 
 
 

Fig. 3 The map with obstacles to train the agent 
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In the next step we connect our trained agent into the Unity simulator. In order to connect it to the Unity simulator and make our 
agent familiar to the environment provided by Unity, we use our three sensors to get the images of our surroundings for every 
position the car is in. Hence our three sensors provide us images of what is in front of the agent, left of the agent and to the right of 
the agent. The orientation sensor provides us information about the degree position of the car for each position. Hence the dataset 
consists of images which are captured by our sensor and also a CSV file which consists of the steering angle, breaking and the speed 
which is collected by manually driving the car around the car around the Unity simulator. 
This data collected is now processed using the Deep-Q network algorithm and a model file is created .Once the model file is created, 
we have to connect the model file to the simulator and the car will run on its own. In order to connect to the simulator we use 
Anaconda. It is a tool that is used to run python codes. Anaconda is very effective as it allows us to run python libraries and 
dependencies with great ease. Once the dependencies and libraries are installed using anaconda, the Unity simulator is started, and 
the car begins to run autonomously by the trained model. 

V. RESULT 

Fig. 4 Fully trained agent driving as required 

Fig. 4 shows the agent running smoothly in the Unity simulation environment. It is also seen that the agent has been successfully 
linked to the Unity simulator. The agent successfully performs all the required actions such as following the lanes and avoiding 
obstacles as it goes forward in the environment. It is able to maneuver through the simulation environment, and thus receive the 
positive rewards. We can notice that once the dataset has been collected and the Deep-Q-Learning algorithm is applied to it, the 
agent is able to travel around the environment simultaneously and it can perform behavioral cloning with a high level of accuracy. 

 
 
 
 
 
 
 
 

 
 
 

Fig. 6 Graph showing reward obtained for each step 
 

Fig. 6 shows the rewards obtained by the driving agent for every action it performed. It is seen from the graph that the agent 
receives a reward of +1 whenever it gets closer to the objective and -1 when it moves farther away. The results becomes stable and 
consistent after 1500 time steps.  
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VI. CONCLUSION 
Every year, around 10 trillion kilometers are being covered using automobiles, and people spend billions of hours behind the wheel, 
which they could spend on other important things. Millions of people lose their life, every year, due to road accidents caused by 
human errors. All of this can be eliminated by employing self-driving cars, which saves, not only time, but also lives of millions of 
people.  
The project shows that the agent was successfully trained to drive in the environment created in the Unity simulator. The training 
was done successfully by using Reinforcement learning and Deep-Q-Networks. Various equations and techniques have been 
applied, to help the self-driving automobile make better decisions. The agent recognizes the reward and punishment signals given to 
it during the course of the training. The reward points are collected in a batch, which the agent consults while making a decision. 
The guiding systems make use of neural networks to mimic the processes of biological decision-making systems.  
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