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Abstract: A similitude has been obtained for a pitching oscillating Non planar wedge with attached bow shock at high angle of attack in

hypersonic flow. A strip theory in which flow at a span wise location is two dimensional and independent of each other is being used. This 

combines with the similitude to lead to a one-dimensional piston theory. Closed form of simple relations is obtained for stiffness and 

damping derivatives in pitch. The present theory is valid only when the shock wave is attached with the nose of the wedge. With the 

increase in semi vertex angle of the wedge the stiffness as well as the damping derivatives assumes high value, and the center of pressure 

of the wedge also shift towards the trailing edge. For high Mach numbers the stiffness and damping derivatives become independent of the 

Mach numbers. From the theory developed some of the results are obtained for wide range of Angle of incidence with remarkable

computational ease. 
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1. INTRODUCTION

High฀ incidence฀ hypersonic฀ similitude฀ of฀ Sychev’s฀ [1]฀ is฀
applicable to a wing provided it has an extremely small span 

in addition to small thickness. The unsteady infinite span case 

has been analyzed, but mostly for small flow deflections. The 

piston theory of Light hill [2] neglects the effects of secondary 

wave reflection. Appleton [3] and McIntosh [4] have included 

these฀effects.฀Hui’s฀[5]฀theory฀is฀valid฀for฀wedges฀of฀arbitrary฀
thickness oscillating with small amplitude provided the bow 

shock฀remains฀attached.฀Erricsson’s฀[6]฀theory฀covers฀viscous฀
and elastic effects for airfoils with large flow deflection. 

Orlik-Ruckemann [7] has included viscous effect and Mandl 

[8] has addressed small surface curvature effect for oscillating 

thin฀wedges.฀Ghosh’s฀[9]฀similitude฀and฀piston฀theory฀for฀the฀
infinite span case with large flow deflection is valid for 

airfoils with planar or non-planar฀ surfaces฀ whereas฀ Hui’s฀
theory฀ [10]฀ is฀ for฀ plane฀ wedges.฀ Ghosh’s฀ piston theory has 

been applied to non-planar cases, both steady and unsteady. 

The effect of viscosity and secondary wave reflection has not 

been included. Crasta and Khan have studied the hypersonic 

and supersonic similitude for planar wedge ([17], [12]), for 

Delta wing ([11], [13]) and for Delta wing with curved 

leading edges ([14], [16]). Crasta and Khan have further 

extended the similitude to study the stability derivatives for 

Newtonian limit for planar wedge[19], delta wing [18] and 

delta wing with curved leading edges [15]. In the present work 

the similitude of Hypersonic planar wedge has been extended 

for Hypersonic flows past a non-planar wedge and the effect 

of Mach number and angle of incidence on stability 

derivatives has been studied.

II PISTON THEORY

A thin strip of the wing, parallel to the centerline, can be 

considered independent of the z dimension when the velocity 

component along the z direction is small. This has been 

discussed฀ by฀ Ghosh’s฀ [9].฀ The฀ strip฀ theory฀ combined฀ with฀
Ghosh’s฀ large฀ incidence฀ similitude฀ leads฀ to฀ the฀ “piston฀
analogy”฀and฀pressure฀P฀on฀the฀surface฀can฀be฀directly฀related฀
to equivalent piston mach no. Mp. In this case both Mp and 

flow deflections are permitted to be large. Hence light hill 

piston theory [2] or miles strong shock piston theory cannot be 

used฀but฀Ghosh’s฀piston฀theory฀will฀be฀applicable.
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P is free stream pressure                   (1)
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Since strips at different span wise location are assumed 

independent of each other, the strip can be considered as a flat 

plate at an angle   of attack.  The angle of incidence is same as 

that of wing.  Angle  is the angle between the shock and the 

strip.  
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
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 BA is the specific heat ratio 

and pM the local piston Mach number normal to the 

wedge surface.  

Pitching moment derivatives

Let the mean incidence be 0฀ for the wing oscillating in 

pitch with small frequency and amplitude about an axis X0. 

The piston velocity and hence pressure on the windward 

surface remains constant on a span wise strip of length 2L at 

x, the pressure on the lee surface is assumed zero. Therefore, 

the nose up moment is             

 
L

dxxxpm

0

)0..(

(2)                                                                                                            

A non planar wedge is obtained by superimposing parabolic 

arcs on the two sides of the plane wedge.

Therefore The 

Stiffness  and damping derivatives are respectively
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Where  ,฀� are density and velocity of sound in the free 

stream Combining (1) through (4), differentiation under the 

integral sign is performed. Therefore 
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On Simplifying we get,

The Stiffness and damping derivative are given 

by
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Some of the results have been obtained for various Mach 

Numbers and studied

RESULTS AND DISCUSSIONS:

In Fig.1 the variation of stiffness derivatives with respect to 

the฀pivot฀position฀is฀presented฀for฀฀฀฀α฀=฀10,฀15,฀20,฀and฀25฀
degrees. The location of center of pressure is at 35 %, 45 

%, 50 %, and 55 % respectively from the nose and values 

are on the higher side as compared to the values for planar 

wedge for the same Mach number. The reasons for this 

increase may be that in case of non-planar wedges there is a 

shift of additional area towards the nose and at the same 

time the area at the trailing edge is decreased.

Fig. 2 shows the variation of damping derivatives with 

respect฀to฀ the฀pivot฀position฀is฀presented฀for฀α=฀10,฀25,฀20฀
and 25 degrees. The location of center of pressure is

remains in the range from 20% to 30% from the nose. From 

the figure it is seen that the increase in the damping 

derivatives is very high for the pivot position for h = 0 to 

0.4, this means up to the location of center of pressure 

trends in the pressure distribution are totally different when 

we compare them with that at the trailing edge. The convex 

shape of the non-planar wedge as well as the pressure 

distribution there on may be responsible for this trend in 

the damping derivatives.

Similar results are for stiffness and damping derivatives are 

seen in Figs. 3 and 4.

Results for Mach number 9 are shown in Figs. 5 and 6. The 

variation of the damping derivative is on the similar lines 

as that of at lower Mach numbers namely 7 and 8. 

However, there is drastic change in the behavior of the 

damping derivative for all the Mach numbers at lower 

values of semi vertex angle. The trend tends to become 

linear for the distance from the nose till the location of 

center of pressure. But for the rest of the distance of pivot 

position, the trend remains as expected and the increase in 

the magnitude of the damping derivative is uniform. For 

the higher values of the semi vertex angle namely 15, 20, 

and 25 the behavior is on the expected lines.

Results for Mach number 10 are presented in Figs. 7 and 8. 

As far as stiffness derivative is concerned, the behavior is 

similar to that of at lower Mach numbers. In case of 

damping derivative, the increase in the magnitude is more 

for the forward pivot position and for the rear pivot 
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position it remains the same as that for lower Mach 

numbers as discussed earlier.

Results for Mach number 13, 15, 18 and 20 are presented 

in Figs. 9, 10, 11, 12, 13, 14, 15 and 16. Since this Mach 

number is very high and the effect of the temperature will 

be predominant compared to that of at the lower Mach 

numbers, the shock wave will be very close to the body 

even though it will never collapse with the surface of the 

non-planar wedge as the Mach number independence 

principle will come in to play. At a very high Mach number 

there will be interaction between the boundary layer, 

entropy layer and the shock wave. The above discussed 

explanation may be the reasons for the trends and behavior 

of the stability derivatives.

CONCLUSION:

Present theory demonstrates its application for a wide range 

of the Mach number, angle of attack and the semi vertex 

angle of the wedge. For semi vertex angle five to ten 

degrees the variation in the stiffness and damping 

derivatives is substantial, however; for large values of semi 

vertex angle the variation stiffness and damping derivative 

is only marginal. The variation in the center of pressure for 

stiffness and damping derivatives is from 20 % to 55 % for 

all the Mach numbers and semi vertex Angle of the present 

study. The theory is valid only when the shock wave is 

attached with the nose of the wedge. In the present study 

the effect of Lee surface has been neglected as it is well 

known that the pressure on the lee surface will be 

negligible for hypersonic Mach numbers. The present

theory could be handy at the initial design stage of the 

Aerospace Vehicles. Effects of viscosity & wave reflection 

are also neglected in the present study. The present theory 

is simple and yet gives good results with remarkable 

computational ease with the error around ten percent.

Results and Discussions:

Fig.1: 

Variation of Stiffness derivative with pivot position for M = 7
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Fig. 2: Variation of damping derivative with pivot position M = 7

Fig. 3: 

Variation of Stiffness derivative with pivot position M=8
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Fig. 4: 

Variation of Damping derivative with pivot position M = 8

Fig. 5: 

variation of stiffness derivative with pivot position for M = 9
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Fig. 6: variation of Damping derivative with pivot position for M = 9

Fig. 7: 

variation of stiffness derivative with pivot position for M = 10
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Fig. 8: 

Variation of damping derivative with pivot position for M = 10

Fig 9: 

variation of Stiffness derivative with pivot position for M = 13
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Fig. 10: 

variation of damping derivative with pivot position for M = 13

Fig. 11: 

variation of stiffness derivative with pivot position for M = 15
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Fig. 12: 

variation of damping derivative with pivot position for M = 15

Fig. 13: 

variation of Stiffness derivative with pivot position for M=18
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Fig. 14: 

variation of Damping derivative with pivot position for M =18

Fig. 15: 

variation of Stiffness derivative with pivot position for M = 20
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Fig. 16: Variation of Damping Derivative with pivot position for M = 20
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