

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 9 Issue: VI Month of publication: June 2021

DOI: https://doi.org/10.22214/ijraset.2021.36123

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Development of a GUI Based Program for Design of various Steel Connections

Mahe Farkhar

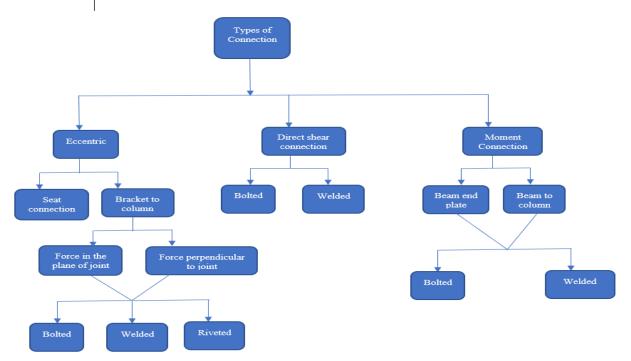
Indian Institute of Technology Kharagpur, Kharagpur

Abstract: Steel frame buildings consist of a number of different types of structural elements. Every element must be attached properly to its neighbouring part of structure. This will involve use of various types of connections. Connections account for more than half the cost of structural steel work. Connection failure is not a ductile failure and hence it should be avoided before member failure. Large uncertainty is there in the design of connections. Connections are usually the most vulnerable part of the structure, failure of which may lead to the failure of whole structure. Thus, design of connection is an important and integral part of design of the steel structure. This MATLAB GUI program developed will be a very useful and user-friendly tool for the design of connections.

Keywords: GUI, MATLAB, shear connection, Web Angle, fillet weld, eccentric connection, seat connection

I. INTRODUCTION

Unlike concrete, connections in steel structures need special design. Mainly three major connections are there: - bolted, welded, riveted but rivets are now seldom used. Steel connection calculations are the most complex and time-consuming phases of the steel structural design. This long and complex process requires precision and efficiency and can become a source of errors with unwanted consequences. This MATLAB GUI program can help reducing time in these complex calculations and also human calculation errors. This can increase precision and accuracy in design process. GUI is a very user-friendly tool and it can be easily used by people. In industry it can of great benefit as it will reduce the long-time consuming process. Connections should satisfy the requirements of structural behaviour. They should be strong enough to transmit the design loads and at the same time have the intended degree of flexibility and rigidity.


There are various types of steel connections based on following: -

- 1) On the basis of connecting medium: -
- a) Bolted
- b) Welded
- c) Riveted
- 2) According to nature and location of load: -
- *a)* Direct shear connections
- b) Pure moment connections
- c) Eccentric connections
- d) Moment shear connections
- 3) According to the type of structural elements: -
- *a)* Single plate angle connections
- b) Double web angle connections
- c) Top and seated angle connections
- d) Seated beam connections
- 4) According to type of members joining:
- a) Beam to beam connection
- *b)* Beam to column connection
- c) Column base plate connection
- d) Column to column connection

Volume 9 Issue VI June 2021- Available at www.ijraset.com

Various types of steel connections are analysed and GUI program is developed for design of connections. Classification of connections is show in the figure below: -

Fig. 1 Division of connections

II. DESIGN METHODOLOGY

- 1) Eccentric Connections
- 1) Load lying in the Plane of Joint
- a) Riveted Connection
- First number of rivets is found out using the direct axial shear No of rivets=1.25*P/R;

R=rivet value.

P= shear force

• Then from bending stress the number of rivets is found out

Number of rivets in a line = $\sqrt[4]{mpR}$

Where, M=moment m= no. of rivets line

p=pitch R=rivet value

Thus, total rivets=m*n

• Check if force in extreme rivet is under limit of rivet value.

b) Welded Connection

- Force from direct shear and bending is found out in terms of throat thickness of weld
- Resultant force is found out
- Equating the resultant force with limit of weld(108Mpa) throat thickness is found
- Size of weld=t/0.707

Volume 9 Issue VI June 2021- Available at www.ijraset.com

- 2) Load Perpendicular to Joint
- a) Welded Connection
- Same process as for load lying in the plane of joint except that for forces are perpendicular to each other.

Force due to bending =M*y/I;

i.e.

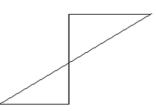


Fig. 2 Stress diagram of weld

Thus, maximum force due to bending develops in the top portion of the joint. The resultant force for that part is found. F_a (stress due to direct shear) = factor load/area of weld

The resultant of the stresses should be less than the maximum stress limit of weld (108 MPa). Equating the force with this value we can find out the size of weld.

III. DIRECT SHEAR CONNECTIONS

- 1) Bolted Connection
- 1) Between Plates:
- First bolt value is found out considering whether bolt is in single shear or double shear
- Then number of bolts is found out by dividing factored load by bolt value
- End distance and pitch is calculated considering the codal provision of IS800:2007

2) Welded Connection:

- 1) Fillet weld:
- Design strength of fillet weld is calculated on its throat area using the formula

$$P_{dw} = \frac{f_u L_w t_e}{\sqrt{3}\gamma_{mw}}$$

Where, P_{dw} = design strength of weld L_w =

- End returns of length equal to twice the size of weld are provided at each end of longitudinal fillet weld
- 2) Butt Weld:
- When plates to be joined are in the same plane then butt weld is used as shown below: -

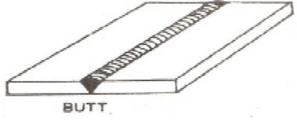


Fig. 3 A typical butt weld

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue VI June 2021- Available at www.ijraset.com

IV. RESULTS AND DISCUSSION

GUI codes for different types of connection are made and shown below.

A. Types of connections

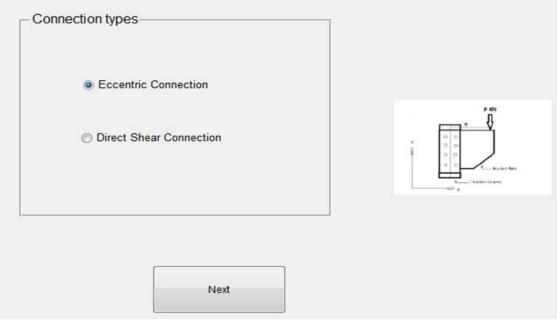


Fig. 4. Types of connections GUI

1) Eccentric Connection

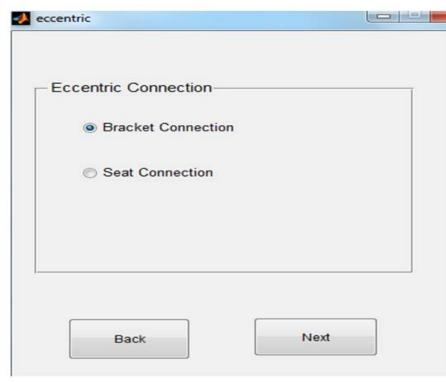


Fig. 5. Eccentric connection types GUI

a) Bracket Connection: Different types of bracket connections design are made in GUI as shown in the figures below: First, we have interface for choosing types of bracket connections.

<u>ە</u> ل	oad lying in the plane	cf joint		
	Турес			
	Riveled Reduct			
	Boited			
	Welded			
ΟL	.oad perpendicular to the — Types—	e joinl		
	Riveled			
	O Dotted			
	O Welded			
	O Weides			

Fig. 6. Types of Bracket connections GUI

We have two cases for bracket connection: - a) load lying in the plane of joint and b) load perpendicular to the joint

- b) Load Lying In The Plane Of Joint
- Riveted connection

	Hot rivet Cold rivet
Factored load in KN	Cold river
	Diameter of rivet in mm
Eccentricity of load in mm	
	Pitch and end distance
	Take minimum value from code
	Pitch in mm
Properties of Steel	
Fe410 steel	End distance in mm
Itimate tensile stress in MPa	Daniel and the factors
	Partial safety factors
ield stress in MPa	Take accrding to IS800 table 5 (cl. 5.4.1)
Partial Safety Factors	
Take according to IS800 table 5 (cl.5.4.1)	Custom safety factor (ymb)
governed by ultimate stress (ym1)	
governed by yielding (ym0)	

Fig. 7 rivet connections for load in plane of joint GUI

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue VI June 2021- Available at www.ijraset.com

Given the below sample inputs, we can find the number of rivets and check it for extreme force developed in the extreme of rivet.

Sample input: -

Eccentricity = 160mm

Factor load = 225KN

Hot rivets and cold rivet show whether rivets are in pretension or not.

Results: - 2*8 no of rivets. 8 in each line.

And it is safe to carry to above load

outs		Properties of rivet	
Factored load in KN	225	V Hot Rivet	
		Diameter in mm	20
Eccentricity of load in mm	160	Pitch in mm	50
		End distance in mm	30
operties of steel		Safety factor	1.25
JItimate tensile stress in MPa	410		
rield stress in MPa	250		
ym1	1.25		
ym0	1.1	Back	Next

Fig. 8 Value check for above GUI

🦺 rivetedplresult	
16 n	o of bolts divided in 2 rows
	lts safe
Redesign	Close

Fig. 9 Result for the above case

Welded connection

Inputs-	Properties of steel	T
Factor load in KN	Fe410 steel	
	Ultimate tensile stress in MPa	
Depth of bracket in mm	Yield Stress in MPa	
Distance of load from face of column in mm	Partial Safety Factors	5
	Take according to IS800 table 5 (cl. 5.4.1)	
Distance of weld from face in mm	Governed by ultimate strength (ym1)	
Properties of weld	Governed by yielding(ym0)	
Partial safety factor	ī	
Shop welding Site welding		
Custom Safety Factor		
Back	Next	

Fig. 10 Welded connections for load in plane of joint GUI

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue VI June 2021- Available at www.ijraset.com

Giving the input value and finding the weld size. First the value is checked and then result is then found out.

Direct shear stress and maximum shear stress due to bending is calculated and resultant stress is calculated and from where thickness of weld is calculated.

nputs		Properties of steel	
Factor load in KN	90		
		Ultimate tensile stress in MPa	410
Depth of bracket in mm	300	Yield stress in MPa	250
istance of load from face of column in mm	110	ym1	1.25
Distance of weld from face in mm	150	ym0	1.1
Properties of weld]	
Custom safety factor 1.25			

Fig. 11 Values check for above case

weldedplresult	
the thickness of weld r	equired is =4.3195 mm
The size of weld req	uires is =6.5097 mm
Redesign	Close

Fig. 12 Result for above case

c) Load Perpendicular To Plane Of Joint

• Welded Joint

nputs	
Factor load in KN	Properties of steel
Eccentricity in mm	Ultimate tensile stress in MPa
Bracket dimension	Yield Stress in MPa
Depth of bracket in mm	Partial Safety Factors
Properties of weld Partial safety factor	
Shop welding Site welding Custom Safety Factor	

Fig. 13 Weld joint for eccentric load perpendicular to the plane of joint GUI

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue VI June 2021- Available at www.ijraset.com

Check for value for some input case and then get the result

inputs		Properties of steel	
Factor load in KN	80	Ultimate tensile stress in MPa	41
Eccentricity in mm	50	Yield stress in MPa	250
Depth of bracket in mm	200	ym1	1.25
Thickness of bracket in mm	10	ym0	1.1
Properties of weld			
Custom safety factor	1.25		
		Back	Next

Fig. 14 check for value of above case

📕 weldedprresult	
Size of	weld is =5.122 mm
Throat thickne	ss of weld is =3.6213 mm
Redesign	Close

Fig. 15 Result for above case

d) Seat Connection: This is another type of eccentric connection.

M 26

Beam properties	Properties of steel
Beam designation	Fe410 steel
Weight (kg/m)	Ultimate tensile stress in MPa
Column properties Column designation	Yield Stress in MPa
Weight (kg/m)	Partial Safety Factors
End reaction in KN	Take according to IS800 table 5 (cl. 5.4.1)
roperties of rivet	Governed by ultimate strength (ym1)
Diameter of rivet in mm	Governed by yielding(ym0)
Types of rivet	
Power driven O Hand driven	
Bearing (Mpa)	Back
Shear Mpa	Next

Fig. 16 Seat connection design GUI

Volume 9 Issue VI June 2021- Available at www.ijraset.com

nputs	1	Properties of steel	
Beam designation	ISMB 300	Ultimate tensile stress in MPa	410
Beam wt. in kg/m	44.2	Yield stress in MPa	250
Column designation	ISHB 250	ym1	1.25
Column wt. in kg/m	54.7	ym0	1.1
End reaction in KN	100	ynio	
Properties of rivet-		ļ	
Diameter in mm	20		
Bearing MPa	250	Back	Next
Shear Mpa	100		

Fig. 17 Value check for above case

eatchoose		
Choose Section	ISA 100X65X10 🔹	Check
angl	e chosen is sufficient	
Back	Next	

Fig. 18 Angle choice GUI for above case

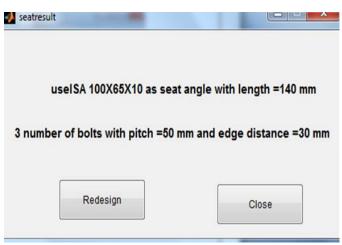


Fig. 19 Result for above case

- 2) Direct Shear Connection
- *a) Bolted Connection:* we will consider two cases for this connection one will be between plates and another will be between plate and angle.
- Between Plates

Properties of bolts Grade of bolt Diameter of bolt in mm Pitch and end distance Take min values according to code IS800
Diameter of bolt in mm
Pitch and end distance
Take minutalities according to code (\$900
Take min values according to code 13800
Pitch in mm
End distance in mm
Partial safety factor-
Take according to IS800 table 5 (cl. 5.4.1)
Custom safety factor
Next

Fig. 20 Shear bolted connection for plates GUI

Inputs			
inputs		Properties of bolt	
Factored load in KN	100	Grade of bolt	4.6
Width of plate in mm	100	Diameter of bolt in mm	12
Thickness of plate in mm	8	Pitch in mm	50
		End distance in mm	30
Properties of steel		Safety factor	1.25
Ultimate stress in MPa	410		
Yield stress in MPa	250		

Fig. 21 Value check for above case

Plateshearresult	
no of bol	ts required is =6
Pitch of bolts aligned and	end distance in is =30 mm and18 mm
Redesign	Exit

Fig. 22 Result for above case

• Between Angle and Plates

	Angle with gusset plate of	connection
nput		Properties of bolt
Angle 1 dimension Length in mm Width in mm Thickness in mm	Angle 2 dimension Length in mm Width in mm Thickness in mm	Grade of bolt Diameter of bolt in mm Pitch and end distance Take min, value according to IS800 Pitch in mm
Plate thickness in mm		End distance in mm Partial safety factor Take according to IS800 table 5 (cl. 5.4.1)
Properties of steel		Custom safety factor (ymb)
Ultimate stress in MPa		

Fig. 23 Result for above case

angleshearcheck

Angle1 dimension-		Angle 2 dimension-		Grade of bolt	4.6
Length in mm	85	Length in mm	85	Grade or bolt	4.0
Width in mm	65	Width in mm	65	Dia. of bolt in mm	16
Thickness in mm	6	Thickness in mm	6	Pitch in mm	40
Plate thickness in m]	8	End distance in mm	24
Plate thickness in m	m		0		
Factored load in KM	4		125	Safety factor	1.25
- 10					
Properties of steel					
Ultimate stress in MPa	1	410			
Yield stress in MPa		250		Back	Next

Fig. 24 Shear bolted connection between angle and plate

angleshearresult	
no of be	olts required are =3
pitch and end	distance are40 mm and27 mm
· · · · · · · · · · · · · · · · · · ·	

Fig. 25 Result for above case

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue VI June 2021- Available at www.ijraset.com

- b) Welded Connection: Two types of welded connection are designed.
- Fillet weld design: fillet weld is used for lap joint and tee joint. A typical fillet weld is shown below:

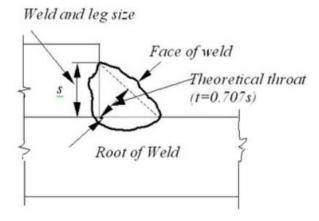


Fig. 26 A typical fillet weld

ections	Properties of steel
Angle Designation	
Thickness of angle in mm	Fe410 steel
Thickness of angle in mm	Ultimate tensile stress in MPa
Plate thickness in mm	Yield Stress in MPa
	Tield Stress in MPa
width of angle	
	Partial Safety Factors
Height of angle	Take according to IS800 table 5 (cl. 5.4.1)
operties of weld	
	Governed by ultimate strength (ym1)
Partial safety factor	
Shop welding	Governed by yielding(ym0)
Custom Safety Factor	

Fig. 27 Fillet weld design for shear connection GUI

Sections		- Properties of steel	
Angle designation	ISA 7575	Ultimate tensile stress in MPa	41
Angle thickness in mm	8		
Angle unconess in thin		Yield stress in MPa	25
Plate thickness in mm	10	ym1	1.2
Angle width in mm	75		
Angle height in mm	75	ym0	1.1
Properties of weld	1.25		

Fig. 28 Value check for above case

Volume 9 Issue VI June 2021- Available at www.ijraset.com

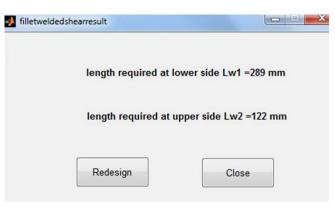


Fig. 29 Result for above case

• *Butt weld design:* - Butt weld is mainly used to connect members which are in the same plane. A typical butt weld is shown below:

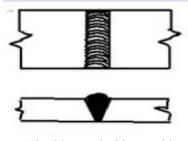


Fig. 30 A typical butt weld

Buttweldshear

buttweldedshearcheck

puts		Properties of steel
Plate 1	Plate 2 Width in mm Thickness in mm	Fe410 steel Ultimate tensile stress in MPa Yield Stress in MPa
Factored tensile load in KI	4	Partial Safety Factors
- Properties of weld-		Take according to IS800 table 5 (cl. 5.4.1)
Partial safety factor-		Governed by ultimate strength (ym1)
Shop welding Custom Safety Factor	Site welding	Governed by yielding(ym0)

Fig. 31 Butt weld design for shear connections GUI

outs			Properties of steel-	
Plate 1	Plate 2		Ultimate tensile str	ess in MPa 410
Width in mm 180	Width in mm	180	Yield stress in MPa	250
Thickness in mm 12	Thickness in mm	8	ym1	1.25
Factored tensile load in KN		200	ym0	1.1
Properties of weld				
Custom safety factor	1.25		Back	Next

Fig. 32 Value check for above case

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue VI June 2021- Available at www.ijraset.com

buttweldedshearresult	
Single V butt weld joint	cannot be provided
Adopt double V-bu	tt joint with size =8 mm
Redesign	Close

Fig. 33 Result for above case

IV. CONCLUSION

This GUI program made can be very helpful in industrial sector. Connections account for more than half of structural steel work. This program is very user friendly and easy to handle. It finds out the number of bolts and size of welds for various types of connections.

V. ACKNOWLEDGEMENT

I am highly indebted to my Guide Professor Dr. Damodar Maity Sir for his guidance throughout the project. Again, author wishes to thank Math works and MATLAB for providing platform for developing this software.

REFERENCES

- [1] Dowling, P.J., Knowles, P.R., Graham, W. O. (1988), "Structural Steel Design", Steel Construction Institute, Butterworths, London.
- [2] Fisher, J.W., and Struik, J.H.A., (1974), "Guide to Design Criteria for bolted and riveted joints", Wiley, Chichester
- [3] Owens, G.W., and Cheal, B.D., "Structural Steel work Connections", Butterworths, 1989
- [4] Ballio, G. and Mazzolani, F. M., Theory and design of steel structures. Chapman and Hall, London, 1983
- [5] Design examples to Eurocode 3 ECCS, Publication No 71, Brussels, 1993
- [6] Boston, R.M. and Pask, J.W. 'Structural Fasteners and their Applications', BCSA 1978.
- [7] Joints in Simple Construction, Volume 2: Practical Applications, SCI/BCSA Pub 206, 1st Ed, 1992.
- [8] Draft for Development DD ENV 1993-1-1: 1992 Eurocode 3: Design of Steel Structures, Part 1, General Rules and Rules for Buildings.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)