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Abstract: The ever-increasing complexity of the integrated circuits design and the scale of the projects are making verification 
more challenging and time-consuming. As a result, the rapidly expanding VLSI industry necessitates a highly reliable and 
robust verification mechanism. In this paper, System Verilog Verification and Universal Verification Methodologies were 
adopted to verify the Accellera Open Core Protocol 3.0 as per specifications. According to the verification plan, the environment 
was developed under a dynamic approach, and the passive aspects included scoreboard, functional coverage, and system verilog 
assertions. The presented frameworks had verified OCP achieving successful dataflow signals extensions as per results. 
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I. INTRODUCTION 
Over the years, relentless advances in VLSI technology and continuous increase in the complexity of modern SoC designs led to the 
integration of more IP blocks into a chip. Due to the increasing frequency and the amount of data traffic between the IP cores, the 
performance of on-chip buses has become a primary factor for overall system performance. As a result, the demand for a more 
robust and flexible IP -Core interface increases, the need for an open and flexible standard for the efficient on-chip interface is 
becoming more prevalent. The Open Core Protocol 3.0. is an openly licensed, core-centric protocol standard, which defines a high-
performance, synchronous, bus-independent configurable interface for communication between IP cores. OCP consists of an 
aggregation of signals that aims to unify the communication among IP blocks and simplify the system integration problems [1]. At 
the outset, there was no standardized testbench architecture described within the verification industry. This led many organizations 
to the development of strategies that supports different verification scenarios. The surge of developing powerful and standardized 
verification architecture laid the foundation for future methodologies developed by major EDA vendors such as ARM Ltd. and 
Synopsys Inc. collaborated on the Verification Methodology Manual (VMM), a professional publication. It outlines a way for 
utilising System Verilog to validate complex designs. Synopsys developed Universal Verification Methodology (UVM) by 
combining the approaches of Reference Verification Methodology (RVM) and Open Verification Methodology (OVM), which is a 
new standard approved by the Accellera committee for verification of integrated circuit designs. The rapid emergence and evolution 
of verification techniques have necessitated the need for more robust and flexible methodologies such as the SystemVerilog 
Verification Methodology (VMM) and Universal Verification Methodology (UVM). These two methodologies are widely used in 
the design and implementation of verification techniques. The System Verilog verification methodology provides robust testbench 
architectures that includes functional coverage and assertion coverages [2], [3], [4], [5]. The UVM also supports a predefined 
methodology that is applied in a structured and planned way [6], [7], [8]. 
Our verification work is made into two-fold, one is to verify OCP by using System Verilog Verification Methodology and another 
by using Universal Verification Methodology. The paper is structured as follows: Section I covers the introduction. Section II 
briefly describes OCP 3.0. Section III illustrates the two adopted methodologies and their implementations works. Section IV 
discusses the verification plan. Section V discusses about result analysis. Section VI concludes the paper. 

II. OPEN CORE PROTOCOL 3.0 
As the goal of this work is verification of the Open Core Protocol, one needs to understand the specifications of the protocol as 
discussed in this section. The Accellera Open Core Protocol 3.0 establishes a point-to-point connection between two communicating 
components, such as IP cores and bus interface modules. In the taken scenario one entity is a slave and another entity is a master, 
which is developed alongside the testbench. Only the master can be a governing entity, can issue commands, and records the 
responses collected from the slave. The slave responds to directives given to it by accepting and responding data to the master. The 
transaction processes are carried out in three phases; Request, Data Handshake, and Response phases. In the request phase, the 
master presents the commands to the slave, in the data handshake phase master and slave exchange acknowledgments, and in the 
response phase slave presents the response as requested by the master.  
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For the dataflow signals, the prefix M is used for signals driven by the OCP master, and the prefix S is used for signals driven by the 
OCP slave. The dataflow extensions exercised for the verification of the OCP are Burst, Tag and Thread Extensions. Fig. 1, 
illustrates the summary of dataflow signals interface between master and slave. 

 
Fig.1. Summary of Dataflow Signals Interface 

III. VERIFICATION ARCHITECTURES 
The process of testing a design against a set of requirements is known as Protocol Verification. The Verification process evolved as 
a part of design life cycle, because any faults in the design that are not detected before tape-out can lead to the need for newer 
stepping and increase the overall expense of the design process. However, as design complexity grows, the scope of verification 
expands to encompass much more than functionality. While simulation of the design model remains the primary of verification, 
many alternative methodologies are employed to efficiently verify all aspects of the design prior to tape out. In this section, the 
verification architectures that are adopted for carrying the verification process of OCP are presented lucidly. 

A. System Verilog Verification Methodology 
System Verilog Verification Framework is a methodology suitable for verification of complicated SoC components, described by 
the Verification Methodology Manual. [4], [5]. Fig. 2, depicts the components and their connections of the architecture of System 
verilog verification methodology. 
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Fig.2. Architecture of System Verilog Verification Methodology 

The System Verilog verification hierarchy consists of components to construct the verification environment explained below: 
1) Top is the top-level file that generate synchronous signals i.e., Clk, and links the DUT, TestBench, and Interface instances 

together. 
2) Test Bench or Program blocks are mainly used to avoid the race condition problems of test cases. 
3) The Environment class serves as a container for higher-level components such as the generator, bfm, monitor, scoreboard, and 

connected mailboxes. 
4) Generator generates the constrained random stimuli that to be driven to DUT. 
5) BFM drives stimuli to the DUT via complex waveforms. 
6) Mailbox is a way to allow different process to exchange data between each other. 
7) Monitor monitors the DUT's input-output interface in order to record design activity and route transactions to higher layers such 

as Functional Coverage and Scoreboard. 
8) Scoreboard verifies the function of design against a reference model. 
9) Functional Coverage measures the percentage of stimulation scenarios that are covered. 
10) The behavior of protocol characteristics is validated using assertions. 
11) Transaction block defines the master properties and placeholder for pin level activities. 
The environment simulation was carried out in three stages. Build, Run, and Wrap-Up are the three main phases. The Build Phase 
assigns and connects testbench components based on the configuration, constrained randomizes the configuration, resets the DUT, 
and loads commands into registers. The Run Phase runs the testbench components starting from the top: top module synchronizes 
the signals with generated clock pulses, bfm drives the generated stimuli with a testname wrapped in the testbench to the physical 
interface and generates the waveforms. The Wrap-Up Phase consists of sweep and report operations: The results of previous cycle 
are sweeped at the start of the current operation cycle. The scoreboard, coverage and assertion results obtained after executing the 
run phase are collected in the wrap-up phase. These reports are used for formal analysis to verify the behaviour of DUT [5]. 

B. Universal Verification Methodology 
The UVM testbench is developed by using the verification and analysis components derived from the UVM base class libraries. The 
UVM package includes base class libraries from which numerous verification components can be derived to construct the 
hierarchical UVM testbench architecture. The UVM automates the verification process to some extent by introducing new 
constructs like sequences and adding factory utilities like copy, compare, and so on. For the connectivity of multiple verification 
components at the transaction level, the UVM enables Transaction Level Model (TLM) based communication interfaces [6], [7].  
Fig. 3, depicts the components and their connections of the architecture of Universal verification methodology. 
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Fig.3. Architecture of Universal Verification Methodology 

The UVM testbench hierarchy comprises of a number of verification and analysis components. These components along with their 
functionality are described below: 
1) Typically, the UVM Testbench instantiates UVM Test class and as well as the connections between them. 
2) UVM Tests have three major functions: they instantiate the top-level environment, configure it, and apply stimulus to the DUT 

by running UVM Sequences through the environment. 
3) The UVM Environment is a hierarchical component that brings together various interconnected verification components. UVM 

Agents, UVM Scoreboards, UVM Coverage, and other UVM Environments are common components that are instantiated 
inside the UVM Environment. 

4) The main purpose of the UVM Scoreboard is to check the behavior of a DUT by comparing its functions to a reference model. 
5) Functional Coverage measures the percentage of stimulation scenarios that are covered. 
6) UVM Sequencer, UVM Driver, and UVM Monitor are all contained within the UVM Agent. 
7) TLM is a modelling method for creating very abstract representations of components and systems. 
8) The UVM Sequencer acts as an arbiter, allowing different stimulus sequences to govern transaction flow. 
9) Individual UVM Sequence Item transactions are received by the UVM Driver from the UVM Sequencer and applied (driven) 

on the DUT Interface. As a result, by transforming transaction-level stimulus into pin-level stimulus, a UVM Driver transcends 
abstraction levels. 

10) The UVM Monitor collects data from the DUT interface and sends it to the scoreboard and functional coverage for analysis. 
11) A UVM Sequence is a type of object that contains stimulus generation activities. All testcase development is done inside 

sequence exclusively, using body methods (pre body, post body, and body). 
12) The UVM Sequence item contains all master properties, methods registration, and constraints. 
13) The behavior of protocol characteristics is validated using assertions. 
The System verilog and UVM shares similar phases of operation. To ensure a consistent testbench execution flow, the UVM 
simulation is carried out in an organised manner with a discrete set of three phases: Build Phase, Run Phase and Wrap-Up Phase [6].  

IV. VERIFICATION PLAN 
The verification plan is essential to any verification effort as it describes the functional requirements of the design and identifies the 
different features to be verified. The OCP 3.0 verification components are composed of active and passive units. Passive 
components monitor and log traffic information, whereas active components generate and inject transactions or answer to 
transaction requests in accordance with OCP standards. [3].  
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The interface forms the connection between the dynamic environment of the testbench and the static entity, which is the OCP - DUT 
module.  
The various components of the testbench accomplish this connection via virtual interface handles. Besides that, analog concurrent 
assertions are inserted in the interface, which detect the behavior of the OCP during simulations. This section describes the process 
of functional and formal verification carried out in this work. 

A. Functional Verification 
The Functional verification process verifies the design from the functional perspective to ensure whether it complies with the 
specifications. This process involves generating, driving and simulating stimuli to produce waveforms. All master properties from 
the transaction or the sequence item block are randomized along the datatype and the MData and MDataTagID signals were 
specified as queue arrays as the data in these signals has to be transferred as unpacked bursts. Here the burst, tag and thread 
extensions were utilized to carry out verification analysis. 
1) Burst Extension: The atomic length was divided into byte, half word and word for data transactions. In SRMD burst, only the 

first request will be sent out for a sequence of data to the MBurstLength. In MRMD, due to 32-bits width size of MData, 
MBurstLength can have a maximum of 4-word size each comprises of 4 bytes. The slave memory has 8-bit width, so it requires 
4 address locations to fit a word-size data. 

2) Tag Extension: The Tag extension signals gets adds up to the burst properties and performs tagged transactions. MTagInOrder 
Tags allow out-of-order return of data responses. This operation is carried out for burst sequences except wrap and stream. In 
wrap, the address gets wraps at aligned MBurstLength*OCP word size and stream uses fifo to store data irrespective of address. 
In-Order and Out-of-Order types of burst sequences might violate the properties of burst sequences transactions. 

3) Thread Extension: Multi-Threading allows concurrent transactions. Two threads are utilized to carry out the transaction. Each 
transfer is assigned to a thread, and if a request is not accepted when a thread is busy, the interface will block all other threads. 
 

All the instantiated verification components are managed by a top module. To exercise all specified features of the protocol 
extensions, fourteen command testcases and some random stimuli which collectively contributes to the total extensions were 
generated by constraint randomizing the arguments. The constrained random tests target the different modes of data transfer 
supported by OCP and check whether the response coincides with the expected behaviour [7]. Individual object transactions from 
the Generator/Sequencer are received by the BFM/Driver blocks, which drive them on the DUT Interface and generate the 
waveform. By translating transaction-level stimulus into pin-level stimulus, BFM/Driver transcends abstraction levels. 

B. Formal Verification 
Formal Verification is a type of functional verification that relies on static analysis to verify the design's functionality without the 
need for any stimulus. [9]. A variety of formal methods are used to verify a design. Equivalence checking and Property checking are 
the two methods adopted in the taken scenario. 
 
1) Equivalence Checking: Equivalence Checking is an operation that proves that two different implementations or descriptions of 

the same design have equivalent functionality. The scoreboard in the above situation is a sequential equivalency checking 
asynchronous FSM model that works in tandem with the DUT to ensure that each data flow precisely follows the given OCP 
protocol. The scoreboard monitors the proper operation of coherent systems, noting any inconsistencies. They don't make the 
waveforms, but they do show the status of the comparison. 

2) Model Checking: Model checking, also known as property checking, is a technique for determining if a finite-state model of a 
system meets a set of requirements. This comprises Assertion Coverage and Formal based Functional Coverage. Functional 
Coverage aims to define observations within a DUT that indicate the execution of specific functionality. In this work, a 
coverpoint encloses all of the protocol properties to measure the applied stimuli scenarios are covered. Explicit Bins, and 
Implicit Bins are utilized to measure the hits of the applied arguments for the vector signals. Model checking is done with the 
System Verilog Assertion (SVA), which creates a collection of assertions based on the design criteria to check the behaviour of 
properties. In this work, three properties are created that verifies the three states, which are idle, write and read operations that 
covers all specifications of the protocol. 
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V. RESULTS AND DISCUSSIONS 
This section gives the result analysis of Open Core Protocol verified in System Verilog Verification and Universal Verification 
Methodologies. The simulation was carried out using Mentor Graphics QuestaSim tool. Various test scenarios were created in order 
to verify the functionalities of the OCP thoroughly. All three categories of bursts i.e., precise, imprecise and SRMD/MRMD were 
implemented in accordance with increment, default 1, default 2, wrap, stream and 2-dimensional block burst sequences.  
The waveform shown in Fig. 4, represents the simulation waveform of increment burst in SVVM. In this case, precise increment 
write-read operation was executed with 0 latency, where the address increments after completion of each burst length of 4 for burst 
size of 4. 

 
Fig.4. Simulation waveform of Precise Increment burst in SV Verification. 

The waveform shown in Fig. 5, represents the simulation waveform of MRMD 2-dimensional burst in SVVM. In this case, 
imprecise 3 block write-read operation was executed with 0 latency, where the address increments after completion of each burst 
length of 4 for burst size of 4 and block height increments after completion of 4 burst size. 

 
Fig.5. Simulation waveform of MRMD Imprecise block burst in SV Verification. 
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The waveform shown in Fig. 6, represents the simulation waveform of wrap burst in SVVM. In this case, precise wrap write-read 
operation was executed with 0 latency, where the address wraps to the beginning address after reaching warp boundary. 

 
Fig.6. Simulation waveform of wrap burst in SV Verification. 

The waveform shown in Fig. 7, represent the simulation waveform of Default 1 burst in UVM. In this case, thread busy operation 
was executed with 1 latency. When a thread gets busy the command presented to that thread goes to hold state and other threads also 
blocks. 

 
Fig.7. Simulation waveform of Default 1 burst in UVM. 
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The waveform shown in Fig. 8, represents the simulation waveform of SRMD Default 2 burst in UVM. In this case, single request 
multiple data default 2 operation was executed with 1 latency. 

 
Fig.8. Simulation of SRMD Default 2 burst in UVM. 

The waveform shown in Fig. 9, represents the simulation waveform of Stream burst in UVM. In this case, data sequence is saved 
into a fifo regardless of address. 

 
Fig.9. Simulation of Stream burst in UVM. 
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Scoreboard is static in nature and do not supports unpacked array of dynamic data. To overcome this problem a clone of MData 
signal was implemented, which monitors and plays master data signal to the scoreboard. 

 
Fig.10. Transcript results of Scoreboard in SV Verification. 

The Transcript results of scoreboard are shown in Fig. 10. In this case, the transcript window shows the result of wrap operation, 
that consists of Wrap boundary values, transaction values, scoreboard values and comparison, assertion results statements. 
Assertion and Functional Coverage were used to determine the progress of the verification. The functional coverage collects 
coverage information defined in the coverage group. Assertion validates the protocol behaviour at DUT interface. 100% Functional 
Coverage and Assertion coverages are achieved in both methodologies. Fig. 11, depicts the overall functional coverage results in 
UVM. And Fig. 12, depicts the assertion coverage results in UVM. 

 
Fig.11. Functional Coverage Report UVM 
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Fig.11. Assertion Coverage Report in UVM 

VI. CONCLUSIONS 
The proposed verification framework of OCP is discussed briefly along with specified methods of custom verification in System 
Verilog Verification and Universal Verification Methodologies. The result of verification methodologies indicates that the testbench 
accomplished verification of OCP, and achieved 100% of functional coverage and assertions that ensure the verification 
effectiveness of the architectures. More importantly, the presented verification architectures are significant and generalized to block-
level verification of SoC designs. 
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