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Abstract: Money laundering is the illegal process of concealing the origins of money obtained illegally by passing it through a 
complex sequence of banking transfers. Currently banks use rule based systems to identify the suspicious transactions which 
could be used for money laundering. However these systems generate a large number of false positives which leads the banks to 
spend a huge amount of money and time in investigating the false positives. Hence, in this paper, the monitoring of transactions 
is to be done using XGBoost machine learning algorithm in order to reduce the number of false positives and to increase the 
probability of identifying true positives. 
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I. INTRODUCTION  
Money laundering is the process of changing large amounts of money obtained from crimes, such as drug trafficking, into origination 
from a legitimate source. This is recognized as a crime by law makers around the world. Therefore, financial institutions are subject to 
regulations by government and regulators such as the US Office of the Comptroller of the Currency (OCC), according to which they 
are liable to investigate any kind of money laundering activity committed by their customers. For this purpose, banks use many rule 
based systems which generate alerts whenever a suspicious transaction is encountered. These alerts are manually investigated by the 
bank and a Suspicious Activity Report (SAR) is raised and reported to regulators  when the activity is deemed suspicious. The major 
challenge faced by the banks is the huge number of false positives (i.e legal transactions flagged as suspicious). This leads to the 
banks spending a lot of time and money in investigating these false positives. Machine learning presents a quick, accurate and more 
cost efficient alternative compared to the existing rule based systems used by the banks. In this paper,  analysis has been conducted on 
synthetic data using the XGBoost classification method for identifying money laundering transactions.  
The paper consists of the following sections: Section-2 contains the literature survey based on detection of Anti-money laundering 
(AML). Section 3 includes the experimental setup and methodologies.  Section 4 contains the details of the block diagram/algorithm 
for the chosen methodology. Section 5 contains the analysis of the results and Section 6 is the conclusion.  

II. LITERATURE SURVEY 
The available literature on the different methods used for detecting money laundering is limited. The existing literature on AML 
methods can be divided into two broad categories: 
 
A. Unsupervised  Learning 
B. Supervised Learning 
 
Unsupervised learning is a type of algorithm which learns patterns from unlabeled data. In this case, an unsupervised learning 
algorithm would not have any information on whether the particular transaction is related to money laundering or not. The 
supervised learning algorithms use labeled data to differentiate between money laundering and legitimate transactions. However, 
this is a problem in AML as a financial institution rarely finds out whether a particular customer is actually guilty of committing 
money laundering. However, this issue is resolved by modelling behavior that is suspicious instead of actual money laundering. In 
this paper, the focus is on unsupervised learning techniques. The existing literature shows that machine learning techniques like 
Naive Bayes, Decision trees, Support vector machines etc., have been used to detect money laundering. 

III. SOFTWARE 
Python is an interpreted high-level general-purpose programming language. Python is easily interpretable and contains a number of 
built-in packages. Python is It is widely used in the field of machine learning and has also been used in this paper.  
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IV. PREVIOUS WORKS 
In the existing work,Naive Bayes classifier was used to detect money laundering. Naive Bayes classifiers is a family of simple 
probabilistic classifiers based on applying Bayes theorem. It is called “naive” because its core assumption of conditional 
independence (i.e., all input features are independent of one another) rarely holds true in the real world. Classifiers are given 
different instances (object/data) to classify into predefined classes(groups), assuming there is no interdependency of features(class 
conditional independence). In the Bayesian analysis , the final classification is produced by combining both sources of information, 
i.e., the prior and the likelihood, to form a posterior probability using the so-called Bayes rule. 

A. Drawbacks of Existing Work 
The false positive rate for the Naïve Bayes model is 98% which is very high. A model which has very high false positive rate could 
lead the financial institution to spend a huge amount of money in investigating false positive cases.  

V. PROPOSED METHODOLOGY 
In this paper, Extreme Gradient Boosting (XGBoost) algorithm has been chosen as the preferred methodology.  XGB is an ensemble 
based machine learning technique which produces a prediction model in the form of an ensemble of weak production models, 
typically decision trees. It builds the model in a stage-wise fashion like other boosting methods do, and it generalizes them by 
allowing optimization of an arbitrary differentiable loss function.  
1) Advantages: The combination of individual models should produce an outcome that outperforms that of any individual member, 

as in every subsequent iteration the model tries to correct the error made by the model in the previous iteration. They are also 
relatively quick to build allowing for multiple iterations of the modelling process to refine the final model. The model also has an 
inbuilt cross-validation method at each iteration which takes away the need to explicitly perform cross-validation.        

2) Disadvantages: Boosting can be more sensitive to outliers compared to other methods, thereby leading to over-fitting. It is also 
less easily interpretable than some other methods with some additional analysis required to understand the influence of different 
features.  

In this paper, the XGBoost model is built using decision trees as the base models. Some of the features of XGBoost include 
parallelization and tree pruning. Parallelization refers to the process of building trees sequentially using parallelized implementation, 
which results in faster computation. The below figure shows how XGBoost uses parallelization at a branch level. 

 

Fig. 1: XGBoost parallelization 
 

Tree pruning refers to the process by which portions of the decision tree are removed in order to make the tree more efficient. 
XGBoost uses “max_depth parameter to perform this pruning.   
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VI. BLOCK DIAGRAM/ALGORITHM 

 
Figure 2.  Block Diagram of  XGBoost Machine Learning algorithm 

1) STEP 1:Data acquisition and Data cleaning  
Synthetic dataset was used for the purpose of this paper. The data was checked for missing values and cleaned using Python code. 

 
2) STEP 2: Feature selection  
The necessary features for the model which affect the transactions are selected in this step. The selected features are shown in Table 
1.  

Table 1: Features selected 
Feature Description 

Type 
Type of  transactions like payment in/out, 

cash, debit, transfer 
Amount Amount transacted by the customer 

Old balance of originator Old balance of the customer who 
initiates/originates the transaction 

New balance  of originator 
New balance of the customer who 
initiates/originates the transaction 

Old balance of Beneficiary 
Old balance of the customer who receives 

the transaction amount 

New balance  of Beneficiary New balance of the customer who  
receives the transaction amount 

 

3) Step 3: Division of dataset 
The entire dataset was divided into two subsets as Training dataset (70%) and Test dataset (30%). 

4) Step 4: Model Implementation 
The model was designed with the help of XGBoost classifier. 

5) Step 5: Hyperparameter tuning 
The hyperparameters used in the model were tuned using RandomizedSearch CV technique. Some of he hyperparameters tuned using 
this technique are as follows: 
a) Learning Rate - This makes the model more robust by shrinking the weights on each step. 
b) Max_depth - This is the maximum depth of the decision tree. 
c) Min_child_weight - Defines the minimum sum of weights of all observations required in a child.  
d) Gamma -  A node will be split only when the split gives a positive reduction in the loss function. Gamma specifies the minimum 

loss reduction required to make a split in the node.  
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VII. RESULTS 
The following metrics were evaluated to determine the performance of the XGBoost model. 
 

 
Fig. 3. ROC Curve and Precision-Recall curve 

 

  
Fig. 4. XGBoost vs Naive Bayes model 

 
The above metrics are calculated using the following formulae: 
1) Sensitivity or True Positive rate = (TP)/(TP+FN) 
2) Precision    = (TP)/(TP+FP) 
3) Accuracy    = (TP+TN)/(TP+FP+TN+FN) 
4) False positive rate =(FP)/(FP+TN)=1-Specificity 
5) F-1 score=2*Precision*Recall/(Precision+Recall) 

VIII. CONCLUSIONS AND FUTURE SCOPE 
The proposed XGBoost model shows much better performance in terms of metrics such as False positive rate, Precision-Recall Area 
under the curve etc., compared to the existing Naïve Bayes model. 
The XGBoost model has very low false positive rate(~2%) compared to the Naive Bayes model. Therefore, this model will help in 
reducing false positives thereby saving a lot of time and money for the bank. 
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