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Abstract: Power systems may revelation the harmful and undesirable chaotic phenomenon in certain conditions. This project 
describes the control of a chaotic oscillation in power system. Chaos may lead the power system to voltage instability and voltage 
collapse when voltage stability conditions are broken. Chaotic oscillations are very sensitive to parameter and initial conditions 
of power system. Many controllers are projected in practical to suppress the chaos and avoid voltage collapse. In this thesis, a 
Conventional Sliding Mode Control is applied for removal of chaotic oscillations. The aim of the controller is to remove the 
chaotic oscillations and bring the order to the nonlinear system. It is also shown that the proposed controller assurances the 
system state convergence to their desired ethics. To demonstrate the effectiveness of the projected controller, MATLAB 
Programming is done. 
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I. INTRODUCTION 
Generally, the electric power systems are embraced of three-phase AC systems which is operating basically at constant voltages. 
Voltage stability refers as the ability of the system to maintain steady acceptable voltages at all buses of the power system under 
normal operating conditions and after being subjected to some disturbances too. Due to increase in the loads demand, faults on the 
system or any other changes which is affecting the system conditions, the disturbances produced. 
When a disturbance acting on the system causes an overpowering and progressive change in the bus voltages, the power system 
comes into voltage instability state. A low unacceptable voltage profile in a significant part of the power system may be led by The 
sequence of events associated voltage instability which led the system to the voltage avalanche[1]. 
In past decades, significant research and development work has been undertaken to gain a better insight and develop analytical tools 
for system stability studies. Though interconnected transmission networks result in economical operation and increased reliability 
through mutual support, they also contribute to an increased complexity of stability problems. The complex transmission network 
may worsen the consequences of instability in such cases[2].  
In the past twenty years, power system instability is one of the main reasons for large-scale blackouts all over the world. Modern 
power system is forced to operate close to its stability limit due to the growth of power demand and other constraints for structuring 
new power plants and transmission lines. Recently, electric power systems have become huger and more complicated as stability 
problems have become more complex as interconnections become more extensive. 
Power system is a very complex nonlinear system. So, there may be the chance of exhibiting unstable behaviour. This complex 
nonlinear system frequently leads to problem that are related to its safety and shows unstable operations. Power system comes into 
transient stage when the disturbance happens. If the disturbance is small then continuous oscillation follows and if the disturbance is 
large then the system may come into chaotic behaviour[3]. 
Many researchers studies the chaotic marvel in power system which were mainly focused on the effect of chaotic oscillations in 
power system. The main cause of these oscillations and its relationship with power system instability were also studied in [9-13]. 
During the analysis of stability of nonlinear system, it is very crucial to study the nature and dynamics of its response. It is obvious 
that a complex nonlinear system shows chaotic oscillations under certain initial conditions. It makes the system dynamically unstable, 
causes severe problems and ultimately leads to operational instability.  
To supress these chaotic oscillations and voltage instability, different kind of the sliding mode controllers are used [6]. Chattering-free 
time scale separation SMC was applied in [8] to power system chaos suppression. CSMC and Super Twisting SMC are implemented 
in [11] for the chaos suppression.  
In the early 1960s,  Russian scientists invented Sliding Mode Control and it is known from Variable Structure Control (VSC) and also 
stated in the article of Utkin in 1970s [4]. SMC has a simplicity and robustness in contrast to system uncertainties and instabilities. 
That’s why it studied widely and effectually for the implementation in control problems[5]. 
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II. SINGLE MACHINE INFINITE BUS POWER SYSTEM MODELLING 
A. Dynamic Model Of The Power System 
Under some consideration, a three-bus system is consisted by the power system as shown in Fig. 1. The infinite busbar is 
represented by ,  and . The Generator model is represented by ,  and , the load bus voltage and phase angle are 
represented by and δ. This considered system also involves an induction motor with a PQ load in parallel. [10] 

 
Fig. 1. Considered three-bus power system 

The rotor motion of the generator is specified via the swing equation, [13][14] 
M.  + .  -        (1) 

         (2) 
The generated electrical power, 

 = -   sin( ) -    sin(δ -  +  )  (3) 
 
Using (1), (3) and (2), we get 
M. = -  + +    sin(δ - -  ) +   sin( )                     (4) 

B. Model Of The Power System Load  
The load model comprises of a dynamic induction motor representation for industrial load which is in parallel with a constant P-Q 
load and a constant impedance load representing residential plus commercial load. Here, load demands are voltage and frequency 
dependent. 
P (scheduled) =  +  +  + (  + T  ) 
Q(scheduled) =  +  +  +  + .  

    (5) 
where,  

,  = The constant real and reactive powers of the motor respectively 
,  = P-Q loads that can be varied for getting load flow result 

T = Time constant of the motor 
, , ,  and  = Empirical constants that characterize the load 

 
Fig. 2. A modest power system 
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Initially, the load flow has a flat start with  pu and δ = 0. After that new  and  are calculated with   and δ = 
0. 
Figure is modelled as Thevenin equivalent circuit to make it convenient to account for the capacitor by adjusting  and  instead 
of including the capacitor in the circuit. Therefore, the voltage, admittance and angle of Thevenin equivalent circuit can be 
expressed as, 

 =  

 =  

 =  +  

The real power of the load bus is being supplied through the network is expressed by, 

The reactive power of the load bus is being supplied through the 
network is expressed by, 

 
Q = cos(δ + ) + cos(δ -    + ) - 

(  cos( ) +  cos( ).       (7) 

Using the above equations (5), (6) and (7), we get 
.  = co s(δ + ) + cos(δ - 

) -  -  -   - (  
cos( ) + cos( )).                       (8) 

  
T. . .  =    + (   -  )  

- (    sin(  + ) +    
cos(δ -  + )) + ((  sin( )) + 

 sin( )).  -  - ) - (   
 cos(  + ) +    cos(δ -  + 
)) + ((  cos( ) +  cos( )) 

 +  + )                                
(9) 

 

By gathering the equation (2), (4), (8) and (9) represent the power system dynamic model.  

 

C. Calculation of Equilibrium Points 
By setting the left-hand side of equations (2), (4), (8) and (9) to zero and solving the non-linear algebraic equations by the Newton–
Raphson method, the steady state equilibrium points , , ,  can be calculated. 
By taking the first partial derivatives of the right-hand side of equation (2), (4), (8) and (9), the Jacobian matrix of the load flow 
equations can be calculated. The determinant of the Jacobian becomes zero when these equilibrium points become the saddle node 
bifurcation points. 
det(J) = 0      (10) 
 

   P = -    sin(δ + ) - sin(δ -  +                
)+ (  sin( ) +  sin( )).                 (6) 
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By equating the determinant of (J) to as well as by neglecting higher order terms and assuming that the cosine of a small angle is 
equal to one and the sine of a small angle to be equal to the angle itself in det(J) will take the following term: 

-  +  +  - 2(  +  + ).  = 0  

 =      (11) 

 =  -     (12) 

From equation (9), the load active power at bifurcation is obtained. 

 = (    + (   -  )  - (  - 

P) + (  +  - Q))               (13) 

The other equilibrium points δ,  and  can be obtained by solving the nonlinear equations (2), (4), (8) and (9) iteratively.  

By substituting the parameters values given in [10] in (4.4), (4.8) and (4.9), the equilibrium points for , Q and P can be obtained. 
The parameters of the generator are such that  = 5,  = −5,  = 1,  = 1,  = 0.05, and M = 0.3. Te parameters of the 
network are such that  = 20,  = −5,  = 1, c = 12,  = 8,  = −12, and  = 2.5 Te parameters of the load are such that  = 
0.4,  = 0.3,  = −0.03,  = −2.8,  = 2.1, T = 8.5,  = 0.6,  = 1.3. All the parameter values are in per unit except the 
angles which are in radians. 

By applying these values of parameters, the power system model can be written as, 
 =  
=  sin(δ - +  ) + +   

   =  cos(δ -  - ) -  cos(δ -  ) +  + 
 +   +  +  

 =   cos(δ -  - ) +  cos(δ - ) + 
+  + +                        

                                                                     (14) 

Here the values of parameters p1-p19 are as following: 

p1 = 16.66667, p2 = 0.087266, p3 = −0.16667,  

p4 = 1.88074, p5 = −166.6667, p6 = −666.66667,  

p7 = 0.20944, p8 = 496.87181, p9 = −93.3333,  

p10 = 33.33333, p11 = 43.33333, p12 = 26.21722,  

p13 = 0.01241, p14 = 104.868887, p15 = 0.13458,  

p16 = −78.7638, p17 = 14.52288, p18 = −5.22876,  

p19 = −7.03268. 

The state variables  is taken instead of  respectively. So, the state variable  is written in such 
that = . 
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Hence, the power system dynamic model is determined by following expressions: 
 

 =  sin( - + ) + +   
 =  cos( -  - ) -  cos( - ) +  + 

 + + +  
 =  cos( -  - ) + cos(  - ) + 

 +  + +                  (15) 

The fourth-order model (15) of the power system is simulated when  =  = 0 and with =11.37 to obtain the results without 
using controller. 

The thesis’s main aim is to design controllers meant for the power system so that chaotic oscillation can be suppressed.  
For that let , ,  and  represent the desired values of , , ,   respectively which satisfy the following two 
equations: 
1)  = 0 
2)  sin( - + ) +  = 0            (16) 
  
      
D. Transformation Model 
To signify the errors between actual and desired states of the system, the transformation model is obtained. So, the following 
transformation is proposed to facilitate the design of the controller: 

 =  -  
 =  
 =  sin( - + ) +  sin( - + ) + 

 
=  -                                                         (17)  

Here, , ,  and  assurances that when they converge to zero at t→∞, then the system states , ,  
and  congregate to their desired ethics, respectively. 

The system model is given by the expression (15) by applying the transformation (17) can be described as, 
 =  
 =  
 =  +  
 =  +        (18) 

where, 
 =    sin( - + ) cos( - + ) + 

( (  - ) +  +  + + 
) sin( - + ) +  cos( - + ) (  

cos( -  - ) -  cos( - ) +  +   + 
 + ) +  (   sin( - + ) +  + 

) 

 =  cos( -  - ) -  cos( - ) +  + 
 + +  

 =  sin( - + ) +  cos( - + ) 

 =         (19) 
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The transformed model (17) is used to design the controller. The controllers will be designed to power the state variables , 
,  and  to congregate them to zero as t→∞, so that the system states , ,  and  meet to their 

desired ethics. 

E. Design of a Conventional SMC to suppress the chaotic Oscillations 
The first step for the choice of the sliding surfaces, is the design of sliding mode controllers. 
Here two sliding surfaces are design for the two inputs of the power system. For that let  , , , ,  and  be positive 
scalars. Hence, the sliding surface  and  are formed as, 

 =  +  +      (20) 
 =       (21) 

 
Theorem: By applying the sliding mode controller  and   to the transformed model (17), the state variables , ,  
and  ensures its convergence to zero as t→∞. 

 = -  -  -  -  (  +  + ) - sign(  
+  + )                 (22) 

 
 = -  -   - sign( )     (23) 

Proof:  

Differentiating (20) and (21) with respect to time (t) and using (18), 

 =  +  +  =  +  +   +    (24) 

By substituting the value of   and  from (22) and (23) respectively, 

 = -   - sign( )     (25) 
 =  =  +  = -   - sign( )    (26) 

The expression descried below is satisfy by above dynamic equations (25) and (26): 

 = -  - sign( ) = -  - |;  
for i =1, 2.       (27) 

When  ≠ 0, the dynamic equations (25) and (26) assurance that  < 0 for (i= 1, 2). Whatever the trajectories associated with the 
discontinuous dynamics (25) and (26) show a finite time reachability to zero from any primary condition which providing the 
scalars , ,    and are positive scalars where the gains  and  are strictly positive and large. Hence, to reach the 
surfaces  = 0 and  = 0 for finite time the dynamic equations (25) and (26) give the assurance. 
Determined that  = 0 for finite time, by the equation  +  +  = 0, the variables ,  and   are overseen after 
such finite time. Since ) will asymptotically converge to zero, the decision is made here from the transformed system (17) that 

 and  will asymptotically converge to 0 as t→∞. As  is driven to zero in finite time,  will congregate to zero in 
finite time.  
So, the conclusion is made that the sliding mode controller inputs (25)-(26) gave the assurance of the state variables , , 

 and  to zero as t→∞. Thus, the controller (25)-(26) guarantee that the asymptotic convergence of the states of , 
,  and  to their desired ethics for t→∞.  

To reduce the chattering associated with the proposed sliding mode controller, the switching function sign can be replaced by the 
saturation function, such that, 
Sat ( ) = { sign ( ),  > ߳ 

    { ,   ≤ ߳      (28) 
with  is a small positive number.  
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III. RESULT ANALYSIS OF THE DYNAMIC POWER SYSTEM WITHOUT CONTROLLER 
The results of the programming without controller are shown in figures 1 to 5. Figure 1 and 2 show the waveforms of the machine 
angle  and the speed deviation  v/s time without applying any controller respectively. 

 
Fig. 1. The machine power angle  v/s time without controller 

 

 
Fig. 2. The speed deviation  v/s time without controller 

The graphs of angle  and load voltage  v/s time without applying any controller are shown in figure 3 and 4 respectively. These 
graphs clearly showed that the chaotic oscillations are present in them in the presence of the disturbance. So, to mitigate these 
chaotic oscillations from the system, the implementation of the appropriate controller should be necessary. 

 
Fig. 3. The load power angle  v/s time without controller 
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Fig. 4. The load voltage  v/s time without controller 

 

 
Fig. 5. The machine power angle  v/s  the speed deviation without controller 

Here, the graph of angle  versus  without controller is shown in figure 5 which represent that in finite-time, the system states 
are not congregated near their desired ethics because of the chaotic oscillations. For the system congregate to their desired ethics by 
eliminate these oscillations, controller is applied in the system. 
For the programming of the dynamic power system model (15) with controller, the control inputs  and   should be variable with 
the disturbing parameter . So, the programming results are obtained for system with control inputs and  as given in (22) and 
(23) and  = 11.37. 

 
IV. RESULT ANALYSIS OF THE DYNAMIC POWER SYSTEM WITH CONTROLLER 

The results of the programming with controller are shown in figures 6 to 12. Figure 6 and 7 show the waveforms of the machine 
power angle  versus time and the speed deviation  versus time with controller respectively. 
It is cleared from these figures 6 and 7 that whatever the oscillation produced, is suppressed when SMC controller is used into the 
closed loop system. The machine power angle  and the speed deviation  of the system converges to their desired value within 
2 to 5 sec which means the proposed controller works well. 

 
Fig. 6. The machine power angle  v/s time with controller 
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Fig. 7. The speed deviation  v/s time with controller 

 
The graphs of the load power angle  and the load voltage  versus time with controller are shown in figure 8 and 9 respectively. 
These graphs clearly showed that the chaotic oscillations well suppressed as SMC is applied into the closed loop system but the 
responses suffer a little bit from chattering problem. 

 
Fig. 8. The load power angle  v/s time with controller 

 

 
Fig. 5.9. The load voltage  v/s time with controller 

 
Here, figure 10 and 11 show the graphs of inputs of CSMC  and  v/s time, in which the chattering problem is observed. Here, 

 produces an aggressive chattering problem. To suppression this chattering problem, higher order SMC can be used by means of 
obtaining better results. 
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Fig. 10. The input of CSMC  v/s time 

 

 
Fig. 11. The input of CSMC  v/s time 

 

 
Fig. 12. The machine power angle  v/s  the speed deviation with controller 

 

The graph of the machine angle  v/s the speed deviation  with CSMC is shown in figure 6 which shows that the system states 
are converged near their desired ethics in finite time as controller is applied. So, it can be concluded that the proposed CSMC works 
well but its transient responses suffer a little bit because of chattering problem. Nevertheless, this problem is overcome by using the 
higher order SMC. 

V. CONCLUSION 
In this paper, the problem of controlling chaos in a power system is studied in this thesis, for which the three- bus power system 
model is used. It is obvious that there might be present the chaotic oscillation under certain initial conditions which is very sensitive 
to the initial conditions and system parameter as power system is a complex nonlinear system. So, any small changes to them can 
break the stable oscillations. Here, Conventional SMC is used to suppress these chaotic oscillations. Because of this controller, the 
states of the dynamic power system converge to their desired values in finite time and concluded that the proposed controller works 
well. 
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VI. FUTURE SCOPE 
In future, the problem of suppressing chaotic oscillations, chattering phenomenon and peak overshoot will done by using other types 
of sliding mode control schemes like Higher Order SMC, Super Twisting Second Order SMC, Advanced SMC, Terminal SMC and 
Discrete-time SMC as well as observer-based controllers. 
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