Iterative Methods for the Solution of SemiNonlinear Systems with Linear Diagonals

Dr. V. B. Kumar Vatti ${ }^{1}$, Kusuma Doddi ${ }^{2}$, Santosh Kumar Mushinana ${ }^{3}$
${ }^{1}$ Professor, Dept.of Engg. Mathematics, A U College of Engineering, Andhra University, Visakhapatnam, A.P, India
${ }^{2}$ Research Scholar/Dept of Engg, Mathematics, Andhra University, Visakhapatnam, A.P,
${ }^{3}$ Asst Professor, Dept of Engg, Mathematics, AvanthiInstitute of Engg \& Technology, IndiaVisakhapatnam, A.P, India

Abstract: We discuss Jacobi, Gauss-seidel and SOR methods for the solution of semi-nonlinear systems with linear diagonals in this paper. A Comparison of these methods is done through an example.

Keywords: Non-linear equations, Iterative methods, Jacobi, Gauss-seidel, SOR.

I. INTRODUCTION

Let us consider a system of n non-linear equations in n unknownsof the form

If one can express the system(1.1) as in the following from

then, the system(1.2) can be called as semi-nonlinear system.
In the system (1.2), the functions $f_{11}\left(x_{1}\right), f_{22}\left(x_{2}\right), \ldots \ldots \ldots \ldots, f_{n n}\left(x_{n}\right)$ are linear in $x_{1}, x_{2}, \ldots \ldots, x_{n}$, then the system (1.2) can be called as semi non-linear system with linear diagonals.

We now write the semi non-linear system with linear diagonals as
$\left.\begin{array}{l}a_{11} x_{1}+a_{12} f_{12}\left(x_{2}\right)+\ldots \ldots \ldots \ldots .+a_{1 n} f_{1 n}\left(x_{n}\right)=b_{1} \\ a_{21} f_{21}\left(x_{1}\right)+a_{22} x_{2}+\ldots \ldots \ldots \ldots .+a_{2 n} f_{2 n}\left(x_{n}\right)=b_{2} \\ \cdot \\ \cdot \\ a_{n 1} f_{n 1}\left(x_{1}\right)+a_{n 2} f_{n 2}\left(x_{2}\right)+\ldots \ldots \ldots \ldots+a_{n n} x_{n}=b_{n}\end{array}\right\}$.

We assume throughout this paper that the matrix obtained from (1.3) i.e.,

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \tag{1.4}\\
a_{21} & a_{22} & \cdot & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdot & \cdot & \cdot & a_{n n}
\end{array}\right]
$$

is a positive definite matrix.

II. ITERATIVE METHODS

we now discuss the Jacobi, Gauss-seidel and SOR methods for solving the semi-non linear system with linear diagonals i.e., the system (1.3).

A. Jacobi Method

Firstly, we re-write system (1.3) as
$x_{1}+\frac{a_{12}}{a_{11}} f_{12}\left(\mathrm{x}_{2}\right)+\ldots \ldots \ldots \ldots .+\frac{a_{1 n}}{a_{11}} f_{1 n}\left(\mathrm{x}_{n}\right)=\frac{b_{1}}{a_{11}}$
$\frac{a_{21}}{a_{22}} f_{21}\left(\mathrm{x}_{1}\right)+x_{2} \ldots \ldots \ldots \ldots+\frac{a_{2 n}}{a_{22}} f_{2 n}\left(\mathrm{x}_{n}\right)=\frac{b_{2}}{a_{22}}$
\cdot
$\frac{a_{n 1}}{a_{n n}} f_{n 1}\left(\mathrm{x}_{1}\right)+\frac{a_{n 2}}{a_{n n}} f_{n 2}\left(\mathrm{x}_{2}\right) \ldots \ldots \ldots \ldots . .+x_{n}=\frac{b_{n}}{a_{n n}}$

Forming a matrix A_{s} by collecting the coefficients of the variables as well as functions, we have

$$
A_{s}=\left[\begin{array}{cccccc}
1 & \frac{a_{12}}{a_{11}} & \cdot & \cdot & \cdot & \frac{a_{12}}{a_{11}} \tag{2.2}\\
\frac{a_{21}}{a_{22}} & 1 & \cdot & \cdot & \cdot & \frac{a_{2 n}}{a_{22}} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\frac{a_{n 1}}{a_{n n}} & \frac{a_{n 2}}{a_{n n}} & \cdot & \cdot & \cdot & 1
\end{array}\right]
$$

Splitting the matrix A_{s} as
$A_{s}=I-L_{s}-U_{s}$. \qquad
where $-L_{s}$ and $-U_{s}$ are strictlylower and uppertriangular parts of the matrix A_{s} respectevily.
matrix for the semi non-linear system (2.1) is

$$
\begin{equation*}
J_{s}=\left(L_{s}+U_{s}\right) \tag{2.4}
\end{equation*}
$$

Let λ_{i} be the eigen values of the jacobimatrix J_{s} suchthat
$-1<\lambda_{i}<1$ \qquad
Let the maximum eigen values of the matrix J_{s} in magnitude i.e., the spectral radius of J_{s} be $\overline{\mu_{s}}$. Then, we have

$$
\begin{gather*}
\rho\left(\mathrm{J}_{s}\right)=\max \left|\lambda_{i}\left(\mathrm{~J}_{s}\right)\right|=\overline{\mu_{s}} \tag{2.6}\\
(\mathrm{i}=1,2, \ldots ., \mathrm{n})
\end{gather*}
$$

The Jacobi method for the solution of the system (2.1) is given by

$$
\left.\begin{array}{l}
x_{1}^{(k+1)}=\left(b_{1}-a_{12} f_{12}\left(x_{2}^{k}\right)-\ldots \ldots \ldots \ldots-a_{1 n} f_{1 n}\left(x_{n}^{k}\right)\right) / a_{11} \\
x_{2}^{(k+1)}=\left(b_{2}-a_{21} f_{21}\left(x_{1}^{k}\right)-\ldots \ldots \ldots \ldots . a_{2 n} f_{2 n}\left(x_{n}^{k}\right)\right) / a_{22} \\
\cdot \\
x_{n}^{(k+1)}=\left(b_{n}-a_{n 1} f_{n 1}\left(x_{1}^{k}\right)-\ldots \ldots \ldots \ldots . a_{n, n-1} f_{n, n-1}\left(x_{n-1}^{k}\right)\right) / a_{n n}
\end{array}\right\} .
$$

$$
(\mathrm{k}=0,1,2, \ldots .)
$$

This method (2.7) converges as long as $\overline{\mu_{s}}$ of (2.6)is less than one.
B. Gauss-Seidel Method

The Gauss-Seidel method for the system (2.1) is given by

$$
\left.\begin{array}{l}
x_{1}^{(k+1)}=\left(b_{1}-a_{12} f_{12}\left(x_{2}^{k}\right)-a_{13} f_{13}\left(x_{3}^{k}\right) \ldots \ldots-a_{1 n} f_{1 n}\left(x_{n}^{k}\right)\right) / a_{11} \\
x_{2}^{(k+1)}=\left(b_{2}-a_{21} f_{21}\left(x_{1}^{k+1}\right)-a_{23} f_{23}\left(x_{3}^{k}\right) \ldots \ldots \ldots \ldots . . a_{2 n} f_{2 n}\left(x_{n}^{k}\right)\right) / a_{22} \\
\cdot \\
\cdot \\
x_{n}^{(k+1)}=\left(b_{n}-a_{n 1} f_{n 1}\left(x_{1}^{k+1}\right)-a_{n 2} f_{n 2}\left(x_{2}^{k+1}\right) \ldots . \ldots-a_{n, n-1} f_{n, n-1}\left(x_{n-1}^{k+1}\right)\right) / a_{m}
\end{array}\right\}
$$

$$
(k=0,1,2, \ldots \ldots . .)
$$

The Gauss-Seidel iterative matrix is
$G_{s}=\left(\mathrm{I}-\mathrm{L}_{s}\right)^{-1} U_{s}$ \qquad
where L_{s} and U s are as defined in (2.3).
This method converges as long as the spectral radius of $\mathrm{G}_{\text {s }}$ in magnitude is lessthanone i.e.,

$$
\begin{equation*}
\rho\left(G_{s}\right)<1 \tag{2.10}
\end{equation*}
$$

C. Successive Over Relaxation (SOR) Method

The SOR method for the solution of (2.1) is given by
$\left.\begin{array}{l}x_{1}^{(k+1)}=(1-\omega) x_{1}^{(k)}-\omega \frac{a_{12}}{a_{11}} f_{12} x_{2}^{(k)}-\ldots \ldots \ldots . .-\omega \frac{a_{1 n}}{a_{11}} f_{1 n} x_{n}^{k}+\omega b_{1} \\ x_{2}^{(k+1)}=-\omega \frac{a_{21}}{a_{22}} f_{21} x_{1}^{(k+1)}+(1-\omega) x_{2}^{(k)}-\ldots \ldots \ldots \ldots . . \omega \frac{a_{2 n}}{a_{22}} f_{2 n} x_{n}^{k}+\omega b_{2} \\ \cdot \\ x_{n}^{(k+1)}=-\omega \frac{a_{n 1}}{a_{n n}} f_{n 1} x_{1}^{(k+1)}-\omega \frac{a_{n 2}}{a_{n n}} f_{n 2} x_{2}^{(k+1)}-\ldots-\omega \frac{a_{n, n-1}}{a_{n n}} f_{n, n-1} x_{n-1}^{k+1}+(1-\omega) x_{n}^{k}+\omega b_{n}\end{array}\right\}$
$(k=0,1,2, \ldots \ldots \ldots .$.
where, the choice for the relaxation parameter ω of SOR method is
$\omega=\frac{2}{1+\sqrt{1-\left(\overline{\mu_{s}}\right)^{2}}}$
where $\bar{\mu}_{s}$ is as defined in (2.6).
TheSORmethod (2.11) in matrix notation is
$\left[\begin{array}{cccccc}1 & 0 & . & . & . & 0 \\ \omega \frac{a_{21}}{a_{22}} \frac{f_{21}\left(x_{1}\right)}{x_{1}} & 1 & . & . & . & 0 \\ \omega \frac{a_{31}}{a_{33}} \frac{f_{31}\left(x_{1}\right)}{x_{1}} & \omega \frac{a_{32}}{a_{33}} \frac{f_{32}\left(x_{2}\right)}{x_{2}} & 1 & . & . & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & . & . & . \\ \omega \frac{a_{n 1}}{a_{n n}} \frac{f_{n 1}\left(x_{1}\right)}{x_{1}} & \omega \frac{a_{n 2}}{a_{n n}} \frac{f_{n 2}\left(x_{2}\right)}{x_{2}} & . & . & . & 1\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{n}\end{array}\right)^{(K+1)}=$

$$
\left[\begin{array}{ccccc}
1-\omega & -\omega \frac{a_{12}}{a_{11}} \frac{f_{12}\left(x_{2}\right)}{x_{2}} & . & . & . \\
0 & 1-\omega & . & . & . \\
a_{11} & -\omega \frac{a_{1 n}}{a_{22}} \frac{f_{1 n}\left(x_{n}\right)}{x_{n}} \\
\cdot & \cdot & . & \cdot & \cdot \\
\cdot & \cdot & . & \cdot & \cdot \\
\cdot & \cdot & . & \cdot & \cdot \\
0 & 0 & . & . & 1-\omega
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)^{(k)}+\omega\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
\cdot \\
b_{n}
\end{array}\right)
$$

The SOR iterative matrix is

$$
S_{s}=\left(\mathrm{I}-\omega \mathrm{L}_{s}\right)^{-1}\left\{(1-\omega) \mathrm{I}+\omega \mathrm{U}_{s}\right\}
$$

This method converges if $\rho\left(\mathrm{S}_{s}\right)<1$ \qquad

III. NUMERICAL EXAMPLES

A. Example 3.1

We consider a semi non-linear system with linear diagonals i.e.,
$20 x_{1}-x_{2}^{3}-x_{3}^{2}=18$
$-x_{1}^{3}+7 x_{2}-2 x_{3}=4$
$-x_{1}^{2}-2 x_{2}^{2}+10 x_{3}=7$
whose exact solution is a unit vector.
The matrix A_{s} for the system (3.1) as obtained in (2.2) i.e.,

$$
A_{s}=\left[\begin{array}{ccc}
20 & -1 & -1 \tag{3.2}\\
-1 & 7 & -2 \\
-1 & -2 & 10
\end{array}\right]
$$

is positive definite and the eigen values of Jacobi matrix J_{s} i.e.,

$$
\mathrm{J}_{s}=\left[\begin{array}{ccc}
0 & 1 / 20 & 1 / 20 \tag{3.3}\\
1 / 7 & 0 & 2 / 7 \\
1 / 10 & 2 / 10 & 0
\end{array}\right]
$$

are $0.281822,0.042332$ and 0.239490 and hence $\overline{\mu_{s}}=0.281822$. The relaxation parameter ω_{s} of SOR method as defined in (2.12), is obtained as

$$
\begin{equation*}
\omega_{s}=1.02068588 \tag{3.4}
\end{equation*}
$$

The methods discussed in this paper are applied to obtain the solution of (3.1) up to an error less than 0.5×10^{-9} taking a null vector as an initial guess and
the results obtained are tabulated below along with the error $E=\sqrt{\sum_{i=1}^{n}\left|1-x_{i}\right|}$.

Table-1 Iterative compressions

Methods	No. Of iterations took for the convergence (n)	Error (E)
Jacobi	30	$0.33675133 \mathrm{e}^{-4}$
Gauss-Seidel	17	$0.1083196 \mathrm{e}^{-4}$
SOR	15	$0.15692699 \mathrm{e}^{-4}$

B. Example 3.2

For the following semi nonlinear system with linear diagonals

$$
\left.\begin{array}{l}
20 x_{1}-x_{2}^{3}-x_{3}^{2}=18 \\
-x_{1}^{2}-2 x_{2}+10 x_{3}=7 \tag{3.2}\\
-x_{1}^{3}+7 x_{2}-2 x_{3}=4
\end{array}\right\}
$$

the coffiecient matrix A_{s} is

$$
A_{s}=\left[\begin{array}{ccc}
20 & -1 & -1 \tag{3.3}\\
-1 & -2 & 10 \\
-1 & 7 & -2
\end{array}\right] \ldots \ldots \ldots .
$$

and the jacobimatrix J_{s} is

$$
J_{s}=\left[\begin{array}{ccc}
0 & 0.05 & 0.05 \tag{3.4}\\
0.5 & 0 & -5 \\
0.5 & -3.5 & 0
\end{array}\right] \ldots \ldots . .
$$

It is calculated that the eigen values of A_{s} and J_{s} are 20.1458,6.2203, -10.3661 and 0.012108, $-4.195313,4.183205$ respectively. And hence, the matrix A_{s} is not positive definite and the eigen values of J_{s} are notless than unity in magnitude.

IV. CONCLUISON

As seen in the above tabulated results that the Jacobi, Gauss-Seidel and SOR methods works well as long as the matrix A of (1.4) is positive definite and it is also observed from example(3.2) that all the methods discussed in this paper diverged if A of(1.4) is not positive definite.

REFERENCES

[1] Kuo.M. Solution of nonlinear equations. Computers, IEEE Transactions on,C-17(9):897-898,sep. 1968.
[2] Porsching.T.A. Jacobi and gauss-seidel methods for nonlinear network problems. 6(3),1969.
[3] Richard.J.D.F.L. Burden. Numerical Analysis.8,2005.
[4] Robert.W.H. Numerical Methods. Quantum,1975.
[5] Saeed.N.A, Bhatti.A. Numerical analysis.Shahryar,2008.
[6] Varga, R.S Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs NJ, 1962.
[7] Vatti.V.B.K.,Numerical analysis: Iterative MethodsI.K.International Publishing House Pvt.Ltd.(2016).
[8] Young, D.M., Linear Solution of Large Linear Systems, Academic Press, New York and London, 1971.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

