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Abstract: We discuss Jacobi, Gauss-seidel and SOR methods for the solution of semi-nonlinear systems with linear diagonals in 
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I. INTRODUCTION 
Let us consider a system of  n non-linear equations in n unknownsof the form 
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If one can express the system(1.1) as in the following from  
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then, the system(1.2) can be called as semi-nonlinear system. 

 In the system (1.2), the functions      11 1 22 2, ,............., nn nf x f x f x are linear in nxxx ,......,, 21 ,then the system (1.2) 

can be called as semi non-linear system with linear diagonals. 

We now write the semi non-linear system with linear diagonals as 
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We assume throughout this paper that the matrix obtained from (1.3) i.e., 

11 12 1

21 22 2

1 2
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is a positive definite matrix. 

II. ITERATIVE METHODS 
we now discuss the Jacobi, Gauss-seidel and SOR methods for solving the semi-non linear system with linear diagonals i.e., the 
system (1.3). 

A. Jacobi Method 
Firstly, we re-write system (1.3) as 
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Forming a matrix sA by collecting the coefficients of the variables as well as functions, we have 
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Splitting the matrix sA as  

................ (2.3)s s sA I L U  

.
s s swhere L and U are strictlylower and upper triangular partsof thematrix A

respectevily
 

Now,  the Jacobi 

matrix for the semi non-linear system (2.1) is 

( ) ................ (2.4)s s sJ L U 
1 1 ......... (2.5)

i s

i

Let betheeigenvaluesof the jacobi matrix J suchthat

    

Let the maximum eigen values of the matrix sJ in magnitude i.e., the spectral radius of sJ be s . Then ,we have  

(J ) max (J )
(i 1,2,....., n)

s i s s   


................ (2.6) 

The Jacobi method for the solution of the system (2.1) is given by  
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   2.7    (2.6)is less than o e. nsThis method converges as l ofong as   

B. Gauss-Seidel Method 
The Gauss-Seidel method for the system (2.1) is given by 
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The Gauss-Seidel iterative matrix is  

1(I L ) ........ (2.9)s s sG U   

( 2 . 3 ) .s sw h e r e L a n d U a r e a s d e f i n e d i n
         o f G

. . ,
( ) 1 . . . . . . . . . . ( 2 .1 0 )

s

s

T h is m e th o d c o n v e r g e s a s lo n g a s th e s p e c t r a l r a d iu s in m a g n i tu d e i s
l e s s th a n o n e i e

G 

 

C. Successive Over Relaxation (SOR) Method 
The SOR method for the solution of  (2.1) is given by 
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where, the choice for the relaxation parameter ω of SOR method is  
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 TheSORmethod (2.11) in matrix notation is 
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The SOR iterative matrix is
S      

   
(S ) 1 .......... (2.14)s

This method converges if
 

 

III. NUMERICAL EXAMPLES 
A. Example 3.1 
We consider a semi non-linear system with linear diagonals i.e., 

3 2
1 2 3

3
1 2 3
2 2
1 2 3

20 18
7 2 4 ...........(3.1)

2 10 7

x x x
x x x

x x x

  


    
    

 

whose exact solution is a unit vector. 
(3.1) as (2.2) . .,
20 1 1

1 7 2 ....... (3.2)
1 2 10

.....

     i.e.,
0 1 / 20 1 / 20

J 1 / 7 0 2 / 7  
1 / 10 2 / 10 0

...

s

s

s

s

The matrix A for the system obtained in i e

A

is positive definit the eigen values of Jacobi matrix Je and

  
    
  

 
  
 






(3.3)

 

are 0.281822,0.042332 and 0.239490 and hence 281822.0s . The relaxation parameter s of SOR method as defined in (2.12),  

is obtained as 1.02068588 .......(3.4)s   

 The methods discussed in this paper are applied to obtain the solution of (3.1) up to an error less than 0.5×10-9 taking a null vector 
as an initial guess and 

the results obtained are tabulated below along with the error 
1

1 .
n
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E x
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Table-1 Iterative compressions 
 

Methods 
 

 
No. Of iterations took for the 

convergence 
(n) 

 
Error 
(E) 

Jacobi 30 0.33675133e-4 

Gauss-Seidel 17 0.1083196e-4 

SOR 15 0.15692699e-4 

 
 
B. Example 3.2 
For the following semi nonlinear system with linear diagonals 
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...(3.4)

20.1458, 6.2203, 10.3661 0.012108,
4.195313, 4.183205 . ,

s s

s

s

It is calculated that the eigen values of A and J are and
respectively And hence the matrix A is not positive definite and the eigen

values of J are not less than unity i





.n magnitude

 

IV. CONCLUISON 
As seen in the above tabulated results that the Jacobi, Gauss-Seidel and SOR methods works well as long as the matrix A of (1.4) is 
positive definite and it is also observed from example(3.2) that all the methods discussed in this paper diverged if A of(1.4) is not 
positive definite. 
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