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Abstract: One of the most important functions of the human visual system is automatic captioning. Caption generation is one of 
the more interesting and focused areas of AI, with numerous challenges to overcome. If there is an application that 
automatically captions the scenes in which a person is present and converts the caption into a clear message, people will benefit 
from it in a variety of ways. In this, we offer a deep learning model that detects things or features in images automatically, 
produces descriptions for the images, and transforms the descriptions to audio for louder readout. The model uses pre-trained 
CNN and LSTM models to perform the task of extracting objects or features to get the captions. In our model, first task is to 
detect objects within the image using pre trained Mobilenet model of CNN (Convolutional Neural Networks) and therefore the 
other is to caption the pictures based on the detected objects by using LSTM (Long Short Term Memory) and convert caption 
into speech to read out louder to the person by using SpeechSynthesisUtterance interface of the Web Speech API. The interface 
of the model is developed using NodeJS as a backend for the web page. Caption generation entails a number of complex steps, 
including selecting the dataset, training the model, validating the model, creating pre-trained models to check the images, 
detecting the images, and finally generating captions. 
Keywords: CNN, LSTM, Speech Synthesis Utterance, Image caption generator 

I. INTRODUCTION 
Visual impairment, also known as vision defacement or vision loss, is a loss of ability to determine to the point where it causes 
problems that cannot be corrected by conventional means such as glasses. There are roughly 285 million visually impaired persons 
in the globe, with over 39 million blind people, according to the World Health Organization[1]. Living with a visual defect can be 
difficult because many everyday situations are diffilt to understand without good acuity..  
Automatically describing the content of images using natural languages can be a difficult and time-consuming task. It has a huge 
potential impact, for example, it could help people who are blind or visually challenged have a better understanding of their 
surroundings. It could also provide more accurate and concise descriptions of their surroundings. This project achieves this 
challenge using deep learning neural networks. The method generates semantically meaningful and grammatically correct captions 
for the images using information from picture and caption pairings. 

 
Figure 1: Image caption generation using deep learning 

We are using deep learning to support the thought of performing on the Image Caption Generator. Automatically describing the 
contents of an image with suitable English phrases is a difficult challenge, but it has the potential to greatly assist visually impaired 
people in recognising and acknowledging their environment. The latest mobile phones or cameras can record photographs of the 
surroundings making it possible for the dim sighted people to form images of their environments. These images will be used to 
generate captions that will be read aloud to the visually impaired in order that they will get a far better sense of what's happening 
around them. In this paper, We present a deep recurrent architecture that creates brief descriptions of incoming images 
automatically. Our model uses a pre-trained model named MobileNet to detect the objects from the image, which contains the 
functionality of the convolutional neural network (CNN). These features are then fed into a Long Short Term Memory (LSTM) 
network to get an outline of the image invalid English and SpeechSynthesisUtterance interface of the online Speech API to convert 
caption into speech to read out louder to the person. The interface of the model is developed using HTML, CSS and JavaScript for 
the frontend and NodeJS as a backend for the online page. Our model achieves state-of-the-art performance and generates highly 
explanatory and descriptive captions which will potentially  help the needful and improve their living. 
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II. LITERATURE SURVEY 
Most work in visual recognition has originally focused on image classification, i.e., assigning labels and features corresponding to a 
fixed number of categories to images. Great progress in image classification has been made over the past years especially with the 
use of deep learning techniques[2][3]. Despite the fact that a category label only provides limited information about an image, more 
detailed descriptions will benefit visually impaired people. Farhadi et al. and Kulkarni et al. [4][5] have attempted to generate more 
complex image descriptions in the past, but their algorithms rely on hard-coded phrases and visual concepts. Furthermore, the 
majority of these works strive to accurately convey the contents of an image in a single word. However, this one sentence limits the 
quality of the descriptions. Several studies, such as those by Li et al., Gould et al., and Fidler et al. [6]-[9], have focused on gaining 
a comprehensive knowledge of scenes and objects represented in photographs. The aim of these works was to correctly generate the 
labels corresponding to a fixed number of categories to the type of an image, instead of generating higher-level explanations of the 
scenery and entity depicted on an image. 
Computer vision and natural language processing are linked by a fundamental problem in artificial intelligence that automatically 
describes the content of an image. First and foremost, methods extract annotations (nouns and adjectives) from images[10][11] then 
make a sentence out of the annotations[12][13] created a large-scale recurrent convolutional architecture for visual learning and 
demonstrated the models' utility on three different tasks: video identification, image description, and video description. These 
models incorporate long-term dependencies into network status updates and are trainable from beginning to end. The difficulty in 
comprehending the intermediate result is a limitation. 
Several works attempt to solve this task by finding the image in the training set that is most similar to the test image and then 
returning the caption associated with the test image Jia et al., Kuznetsova et al., and Li et al. find multiple similar images, and 
combine their captions to generate the resulting caption. The LRCN method is further refined for video caption generation [14]-[16]. 
Vinyals et al. [15] suggested a neural image caption model that is exclusively used for image caption generation, rather than one 
architecture for three tasks in LRCN. This model is trained to increase the likelihood of the goal description sentence given the 
training photos by combining GoogLeNet with a single layer of LSTM. The model's performance is assessed both qualitatively and 
quantitatively. The MS COCO Captioning Challenge (2015), in which the results were judged by humans, ranked this method first. 
When LRCN and NIC are compared, three differences emerge that may indicate performance differences. 
Kuznetsova et al. and Gupta et al. combined object detection and feature learning with a fixed sentence template [5][17][18]. They 
attempted to identify objects and features in the image, and then used their sentence template to create sentences describing the 
image based on the identified objects. Nonetheless, this method severely limits the model's output variety. 
There has been a renaissance of interest in picture caption generation as a result of recent deep learning advancements[2] [19]-[22]. 
Several deep learning algorithms have been developed for producing higher-level word descriptions of images [21][22]. 
Convolutional Neural Networks (CNNs) have been shown to be useful models for tasks such as picture categorization and object 
detection. New models for obtaining low-dimensional vector representations of words, such as word2vec and GloVe (Global 
Vectors for Word Representation), as well as Recurrent Neural Networks, Karpathy and colleagues discovered that image features 
and language modelling can be combined to create models that generate image descriptions. 

 
Figure 2: Extracting the features from the image using CNN. 

Christopher Elamri, Teun de Planque [23] also demonstrates a deep recurrent architecture that automatically generates succinct 
explanations for photos. To extract features from images, our models use a convolutional neural network (CNN). These attributes 
are then fed into a recurrent neural network (RNN) or a Long Short-Term Memory (LSTM) network, which generates a satisfactory 
English description of the image. 
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III. BACKGROUND AND PROPOSED APPROACH 
In this section, we look at a deep learning model that generates image descriptions automatically. Our model implements a CNN to 
extract image features, which are then fed into an LSTM network to predict a valid English description of the image. We can also 
use the Web Speech API's Speech Synthesis Utterance interface to convert the LSTM model's descriptions into speech. 

 
Figure 3: Proposed Model 

A.  CNN-based Image Feature Extractor  
For feature extraction, we use a CNN. CNNs have been extensively studied and used for image tasks, and they are now the most 
advanced methods for object recognition and detection [20]. In particular, we extract features from all input images using 
MobileNet, a simple but efficient and computationally light convolutional neural network for mobile vision applications. Object 
detection, fine-grained classifications, localization and face attributes, are just a few of the real-world applications that use 
MobileNet. In this we will explain the overview of MobileNet and how exactly it becomes the most efficient and lightweight neural 
network. And due to the computational constraints, we also reduced a 4096-Dim image feature vector to 512-Dim image feature 
vector using Principal Component Analysis (PCA). We give these features as an input into our LSTM at the first iteration.[27] 
An input layer, hidden layers, and an output layer make up a convolutional neural network. A feed-forward neural network's middle 
layers are referred to as hidden because the activation function and final convolution cover their inputs and outputs. The hidden 
layers of a convolutional neural network include convolutional layers. This usually consists of a multiplication or other scalar 
product layer with ReLU as its activation function. Other convolution layers, such as pooling layers, normalisation layers and fully 
connected layers, follow. 

 
Figure 4: The layers of a convolutional neural network 

The CNN has three most-used layers: convolution, pooling and fully connected layers. Also, Rectified Linear Units (ReLU) 
functions as given below are employed because of the non-linear active function. The ReLU is faster than the traditional tanh 
function. 

f(x) = ReLU(x) = max (0, x)        (1) 
f(x) = tanh(x) = (1 + e−x) −1         (2) 

Dropout layer is used to prevent overfitting. With a probability of 50%, the dropout sets the output of every hidden neuron to zero 
(i.e., 0.5). The "dropped out" neurons don't engage in back propagation and don't contribute to the pass. 
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In comparison to other image classification algorithms, CNNs require very little pre-processing. This means that the network picks 
up on the filters that were previously hand-crafted in traditional algorithms. In feature design, this lack of reliance on prior 
knowledge and human effort could be a significant benefit. 

B.  LSTM-based Sentence Generator 
We will use LSTM (Long Short Term Memory), a type of RNN (recurrent neural network) that is compatible with sequence 
prediction problems, to predict what the next words will be based on the previous text. It has outperformed traditional RNNs by 
overcoming the limitations of RNNs with short term memory. With a forget gate, LSTM can perform relevant information 
throughout the processing of inputs while discarding non-relevant information.[27] 
Our LSTM model takes the image I and a sequence of input vectors (i1, ..., iT ). Then it computes a sequence of hidden states (hs1, 
..., hst) and a sequence of outputs (o1, ..., ot) by following the recurrence relation for t = 1 to T:  

bv = Whi[CNN(I)]                                           (1) 

hst = f(Whxit + Whhhst−1 + bh + 1(t = 1) ◦ bv )  (2) 

ot = Softmax(Wohhst + bo)                               (3) 

where Whsi, Whsx, Whshs, Wohs, xi, bhs, and bo are learnable parameters and CNN(I) represents the image features or object extracted 
by the CNN model.. 

 
Figure 5: LSTM unit and its gates 

The probability of each word in the vocabulary is the LSTM's output. 

C. Speech Synthesis Utterance (For Converting Caption to Speech) 
Speech synthesis is the process of creating a human voice. To turn the description into audio, we use the Speech Synthesis Utterance 
API. The Speech Synthesis Utterance is a Web Speech API interface that represents a speech request. It contains the content that the 
speech service should read as well as for instructions on how to read it (e.g., language, pitch, and volume.)[25]. 

 
Figure 6: Text to Speech 
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IV. EXPERIMENTS 
A.  Dataset  
There are a few datasets utilized for preparing, testing, and assessment of the picture subtitling techniques. The datasets contrast in 
different points of view like the quantity of pictures, the quantity of inscriptions per picture, the configuration of the subtitles, and 
picture size. Three datasets which are Flickr8k, Flickr30k, and MS COCO Dataset are prevalent. 
For this paper, we will utilize the Flickr 8K dataset which has become the standard testbed for picture subtitling. There additionally 
are other enormous datasets like Flickr_30K and MSCOCO dataset yet it can require weeks just to mentor the organization so we'll 
utilize a little Flickr 8k dataset. The benefit of a gigantic dataset is that we will construct better models. The dataset comprises 8,000 
preparing pictures and their description. By partnering each picture with multiple, independently produced sentences, the dataset 
captures a number of the linguistic variety which will be wont to describe an equivalent image. 
Flickr 8k is a decent beginning dataset as it is little and can be prepared effectively on low-end workstations/work areas. 
 

Dataset Filename 
 

Description 

Flick8k_Dataset It contains 8000 images 

Flickr8k.token.txt It contains the image id along 
with the 5 captions. 

Flickr8k.trainImages.txt It contains the training image 
id’s. 

Flickr8k.testImages.txt It contains the test image id’s. 

Table 1: Dataset Structure  
 

B.  Training  
Based on the current word (xt) and the preceding context, we train our LSTM model to accurately predict the next word (ot) (ht1). 
This is how we go about it: We set hs0 to 0, i1 to the START vector, and o1 to the first word in the sequence as the desired label. 
The first word generated by the network is then assigned to the word vector i2. Based on the prior context, the network predicts the 
first word, the second word, and so on. iT represents the last word, and oT is set to an END token in the final step. 

 
Figure 7: Visual representation of the final model. 
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C.  Testing  
To predict a sentence, we acquire the picture highlights bv, set h0 to the 0, set x1 to the START vector, and figure the appropriation 
over the principal word y1. Appropriately, we pick the argmax from the circulation, set its inserting vector as x2, and rehash the 
system until the END token is produced. 

 
Figure 8: Model Summary 

V. RESULTS 
Our models generate sensible descriptions of images in valid English (Figure 9) with audio of the descriptions. The model identifies 
visual-semantic correspondences that can be understood. The generated descriptions are accurate enough for blind or visually 
impaired people to use. In general, we find that the training data contains a significant portion of the generated sentences. 
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Figure 9: Example images and captions from the Flicker8k Caption dataset 

 
 

 

boy in red shirt is running on the grass black dog is running through the 
water 

man is rowing on the edge of lake 

   

dog is running in the grass man is standing on the edge of cliff two girls are walking on the beach 

  
 

two girls are playing in grass man is standing on rock overlooking 
the mountains 

a tennis player in the court 

Figure 10: Results of images that give description by generating accurate captions. 
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VI. CONCLUSION 
In practically every complicated area of AI, image captioning has several benefits. The main use case of our model is to assist the 
visually impaired to know the environment and make it easy to act consistently with the environment. As this is often a posh task to 
try to do, with the assistance of pre-trained models and powerful deep learning frameworks like TensorFlow and Keras, we made it 
possible. This is completely a Deep Learning project which makes use of multiple Neural Networks like Convolutional Neural 
networks and LSTM to detect objects and caption the pictures. To deploy our model as a web application, we have used HTML, 
CSS and JavaScript as frontend and NodeJS as the backend 
We presented a deep learning-based model for automatically generating image descriptions with the goal of assisting visually 
impaired people in better understanding their surroundings. Our described model is based on a MobileNet which is  CNN pre-
trained model that encodes a picture into  
a compact representation, followed by an LSTM that generates corresponding sentences supported by the learned image features. 
We showed that this model achieves state-of-the-art performance, in which the generated captions are highly descriptive of the 
entities and scenes depicted in the pictures. Using text-to-speech technology, visually impaired people can considerably benefit and 
have a far better sense of their surroundings due to the excellent quality of the generated image descriptions. Our current approach 
only creates captions for images, which is a difficult work in and of itself, and captioning live video frames is even more 
challenging. It is often completely GPU-based and captioning live video frames is not  possible with the overall CPUs. Video 
captioning is a popular study subject that is changing people's lives, with application cases found in practically every domain. In the 
following years, we hope to accomplish this aim of video captioning to broaden the scope. 
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