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Abstract: The huge data generate by the Internet of Things (IOT) are measured of high business worth, and data mining 
algorithms can be applied to IOT to take out hidden information from data. In this paper, we give a methodical way to review 
data mining in knowledge, technique and application view, together with classification, clustering, association analysis and time 
series analysis, outlier analysis. And the latest application luggage is also surveyed. As more and more devices connected to IOT, 
huge volume of data should be analyzed, the latest algorithms should be customized to apply to big data. We reviewed these 
algorithms and discussed challenges and open research issues. At last a suggested big data mining system is proposed.  
Keyword: Internet of things, Classification, clustering, Association analysis. 

I.  INTRODUCTION 
The Internet of Things (IoT) and its related technologies can effortlessly mix classical networks with networked devices. IoT has 
been live an vital role ever since it appear which covers from conventional tools to general household objects [1] and has been 
attracting the notice of researchers from academic world, engineering and government in current years. There is a great vision that 
all things can be easily controlled and monitored can be recognized robotically [2]. Lots of analysis technologies are introduced into 
IoT one of the most precious technologies is data mining. 
Data mining discover narrative, motivating, and potentially useful patterns from large data sets and applying algorithms to the 
taking out of unseen information. Many other conditions are used for data mining for example, knowledge discovery databases 
(KDD), knowledge taking out, data analysis, data archeology, data dredging, and information harvesting [3]. The purpose of any 
data mining procedure is to make an well-organized predictive or descriptive model of a huge amount of data that not only best 
explains it but is also able to simplify to new data [4]. Data mining is the procedure of discovering motivating knowledge from huge 
amounts of data stored in databases, data warehouses or other information repositories. On the base of the description of data mining 
and the definition of data mining functions, a typical data mining process includes the following steps (see Figure 1). 
1) Data preparation: organize the data for mining. It includes 3 sub steps:(a) integrate data in a variety of data sources and clean 

the noise from data; (b) extract some parts of data into data mining system; (c) preprocess the data to facilitate the data mining. 
2) Data mining: apply algorithms to the data to find the patterns and evaluate patterns of discovered knowledge. 
3) Data presentation: visualize the data and represent mined knowledge to the user. 

 
Figure 1 The data mining general idea. 

A variety of researches focus on knowledge view, technique view, and application view can be originated in the literature. However, 
no preceding effort has been made to review the different views of data mining in a systematic way, especially in nowadays big data 
[5–7]; mobile internet and Internet of Things [8–10] produce rapidly and some data mining researchers shift their attention from 
data mining to big data. There are lots of data that can be mine like a relational database, data warehouse, data stream, time series, 
sequence, text and web, multimedia [11], graphs, the World Wide Web, Internet of Things data [12–14]. In this paper, we attempt to 
make a complete survey of the important fresh developments of data mining research. This survey focuses on knowledge view, 
utilized techniques view, and application view of data mining. Our main input in this paper is that we chosen some well-known 
algorithms and studied their strengths and limitations. 
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The involvement of this paper includes 3 parts: the primary part is that we suggest a narrative way to review data mining in 
knowledge view, technique view, and application view; the next part is that we talk about the new characteristics of big data and 
analyze the challenges. Another important involvement is that we propose a suggested big data mining system. It is precious for 
readers if they want to build a big data mining system with open source technologies. 
The rest of the paper is planned as follows. In Section second we survey the main data mining functions from knowledge view and 
technology view with classification, clustering, association analysis, and outlier analysis, and bring in which techniques can hold up 
these functions. In Section three we review the data mining applications in e-commerce, industry, health care, and public service and 
talk about which knowledge and technology can be useful to these applications. In Section four IoT and big data are discussed new 
technologies to mine big data for IoT are surveyed, the challenges in big data age are overviewed and a new big data mining system 
architecture for IoT is proposed. In Section five we give a conclusion. 

II. DATA MINING FUNCTIONALITIES 
Data mining functionalities include classification, clustering, association analysis, time series analysis, 
Outlier analysis describes and models regularities or trends for objects whose performance changes over time. 
1) Classification is the method of finding a set of models or functions that explain and differentiate data classes or concepts for the 

reason of predicting the class of objects whose class label is unidentified. 
2) Clustering analyzes data objects without consult a known class model. 
3) Association analysis is the discovery of association rules displaying attribute-value situation that regularly occur together in a 

given set of data. 
4) Time series analysis comprises methods and techniques for analyzing time series data in order to extract significant statistics 

and other characteristics of the data. 
 

A. Classification 
Classification is significant for management of decision making. Given an object, transmission it to one of predefined target 
categories or classes is called classification. For example, a classification model could be used to identify loan applicants as low, 
medium, or high credit risks [15]. 
There are many methods to classify the data with decision tree induction, frame-based or rule-based expert systems, hierarchical 
classification, neural networks, Bayesian network, and support vector machines (see Figure 2). 
1) A decision tree is a flow-chart-like tree structure where each internal node is denoted by rectangles and leaf nodes are denoted 

by ovals. All internal nodes have two or more child nodes. All internal nodes contain splits which test the value of a look of the 
attributes. Arcs from an internal node to its children are labeled with separate outcomes of the test. Each leaf node has a class 
label linked with it. Classification and Regression Trees (CART) is a nonparametric decision tree algorithm. It produces either 
classification or regression trees, based on whether the response variable is categorical or continuous. 

2) The KNN (K-Nearest Neighbor) algorithm is introduced by the Nearest Neighbor algorithm which is intended to find the 
nearest point of the experiential object. The main idea of the KNN algorithm is to discover the K-nearest points [16]. There are 
a lot of dissimilar improvements for the traditional KNN algorithm. such as the Wavelet Based K-Nearest Neighbor Partial 
Distance Search (WKPDS) algorithm [17], Equal-Average Nearest Neighbor Search (ENNS) algorithm [18], Equal-Average 
Equal-Norm Nearest Neighbor code word Search (EENNS) algorithm [19], the Equal-Average Equal-Variance Equal-Norm 
Nearest Neighbor Search (EEENNS) algorithm [20], and other improvements [21]. 

3) Bayesian networks are directed acyclic graphs whose nodes represent random variables in the Bayesian sense. Edges stand for 
conditional dependencies; nodes which are not connected stand for variables which are conditionally independent of each other. 
The research includes naïve Bayes [22, 23], selective naïve Bayes [24], seminaïve Bayes [25], one-dependence Bayesian 
classifiers [26, 27], K-dependence Bayesian classifiers [28], Bayesian network-augmented naïve Bayes [29], unrestricted 
Bayesian classifiers [30], and Bayesian multinets [31]. 

4) Support Vector Machines algorithm is supervised learning model with associated learning algorithms that examine data and be 
familiar with patterns which is based on statistical learning theory. SVM is widely used in text classification [23, 32], 
marketing, pattern recognition, and medical diagnosis [33]. A lot of further research is done, GSVM (granular support vector 
machines) [34–36], FSVM (fuzzy support vector machines) [37–39], TWSVMs (twin support vector machines) [40–42], VaR-
SVM (value-at-risk support vector machines) [43], and RSVM (ranking support vector machines) [44]. 
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Figure 2 The research structure of classification. 

B.  Clustering 
Clustering algorithms [45] divide data into significant groups (see Figure 3) so that patterns in the same group are similar in some 
sense and patterns in different group are dissimilar in the same sense. Searching for clusters involves unsupervised learning [46].for 
example the search engine clusters billions of web pages into different groups such as news, reviews, videos, and audios. One 
straightforward example of clustering problem is to divide points into different groups [15]. 
1) Hierarchical clustering technique combines data objects into subgroups; those subgroups combine into larger and high level 

groups form a hierarchy tree. Hierarchical clustering methods have two classifications, agglomerative (bottom-up) and divisive 
(top-down) approaches. The agglomerative clustering starts with one-point clusters and recursively merge two or more of the 
clusters. The divisive clustering in contrast is a top-down strategy. 

2) Partitioning algorithms find out clusters either by iteratively relocating points between subsets or by identifying areas heavily 
populated with data. Density-based partitioning methods effort to discover low-dimensional data which is dense-connected 
known as spatial data. Grid based partitioning algorithms use hierarchical agglomeration as one stage of processing and perform 
space segmentation and then aggregate appropriate segments. 

3) In arrange to handle definite data researchers change data clustering to pre clustering of items or categorical attribute values 
typical research includes ROCK [47]. 

4) Scalable clustering investigates faces scalability problems for computing time and memory requirements including DIGNET 
[48] and BIRCH [49]. 

5) High dimensionality data clustering methods are designed to handle data with hundreds of attributes including DFT [50] and 
MAFIA [51]. 

 
Figure 3 The research structure of clustering. 
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C.  Association Analysis 
Association rule mining [52] focuses on the market basket analysis or transaction data analysis and it targets finding of rules 
showing attribute-value associations that occur regularly and also help in the generation of all-purpose and qualitative knowledge 
which in turn helps in decision making [53]. The research structure of association analysis is shown in Figure 4. 
1) For the primary list of association analysis algorithms the data will be process sequentially. The a priori based algorithms have 

been used to find out intra transaction associations and then discover associations there are lots of extension algorithms. 
According to the data record format it clusters into 2 types: Horizontal Database Format Algorithms and Vertical Database 
Format Algorithms. Pattern growth algorithm is more complex but can be faster to calculate given large volumes of data. The 
typical algorithm is FP-Growth algorithm [54]. 

2) In some region the data would be a flow of actions and therefore the problem would be to discover event patterns that occur 
frequently together. It divides into 2 parts: event-based algorithms and event-oriented algorithms. 

 
Figure 4 The research structure of association analysis. 

D.  Time Series Analysis 
A time series is a group of temporal data objects the characteristics of time series data comprise large data size, high dimensionality, 
and updating incessantly. Commonly, time series task relies on 3 parts of mechanism, including representation, similarity measures, 
and indexing (see Figure 5) [55, 56]. 
1) One of the main reasons for time series representation is to decrease the dimension, and it divides into three categories: model 

based representation, non-data-adaptive representation and data adaptive representation. The model based representations desire 
to find parameters of fundamental model for a representation. Important research works include ARMA [57] and the time series 
bitmaps research [58]. In non-data-adaptive representations the parameters of the alteration remain the same for every time 
series despite of its nature related research including DFT [59], wavelet functions related topic [60], and PAA [50]. In data 
adaptive representations, the parameters of a alteration will change according to the data available and related works including 
representations version of DFT [61]/PAA [62] and indexable PLA [63]. 

2) The similarity calculates of time series analysis is characteristically carried out in an estimated manner the research information 
include subsequence matching [64] and full sequence matching [65]. 

3) The indexing of time series analysis is intimately associated with representation and similarity measure part the research topic 
includes SAMs (Spatial Access Methods) and TS-Tree [66]. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue VII July 2021- Available at www.ijraset.com 
     

 
3355 ©IJRASET: All Rights are Reserved 

 
Figure 5 The research structure of time series analysis. 

III. DATA MINING APPLICATIONS 
A. Data Mining in e-Commerce 
e-commerce is one of the most possible domains for data mining because data records, customer data, product data, users’ action log 
data, are overflowing IT team has enriched data mining ability and return on investment can be calculated. Researchers influence 
association analysis and clustering to give the insight of what product combinations were purchased it encourages clients to 
purchase related products that they may have been missed or unnoticed. Users’ behaviors are monitored and analyzed to find 
similarities and patterns in Web surfing behavior so that the Web can be more successful in meeting user needs [67].  
 
B. Data Mining in Industry 
Data mining can highly advantage industries such as retail, banking, and telecommunications; classification and clustering can be 
applied to this region [68].Retailers gather customer information, related transactions information, and product information to 
considerably improve exactness of product demand forecasting, variety optimization, product recommendation, and ranking across 
retailers and manufacturers [69, 70]. Researchers leverage SVM [71], support vector regression [72], or Bass model [73] to forecast 
the products’ demand. 
 
C. Data Mining in Health Care 
In health care, data mining is becoming increasingly popular, if not increasingly essential [74–79]. Heterogeneous medical data have 
been generated in various health care organizations, including payers, medicine providers, pharmaceuticals information, prescription 
information, doctor's notes, or clinical records produced day by day. These quantitative data can be used to do clinical text mining, 
predictive modeling [80], survival analysis, patient similarity analysis [81], and clustering, to improve care treatment [82] and 
reduce waste. In health care area, association analysis, clustering, and outlier analysis can be applied [83, 83]. 
Treatment record data can be mined to explore ways to cut costs and deliver better medicine [85, 86]. Data mining also can be used 
to identify and understand high-cost patients [87] and applied to mass of data generated by millions of prescriptions, operations, and 
treatment courses to identify unusual patterns and uncover fraud [88, 89]. 

 
D. Data Mining in City Governance 
In public service area, data mining can be used to find out public wants and improve service performance, decision making with 
computerized systems to reduce risks, classification, clustering, and time series analysis which can be developed to solve this area 
difficulty’s-government improve excellence of government service, cost savings, wider political participation, and more effectual 
policies and programs [90, 91], and it has also been proposed as a solution for rising citizen communication with government 
agencies and political trust [92]. City event information management system can put together data mining methods to provide a 
complete appraisal of the impact of usual disasters on the agricultural production and rank disaster affected areas impartially and 
assist governments in disaster preparation and resource allocation [93]. 
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By using data analytics, researchers can forecast which residents are likely to move away from the city [94], and it helps to suppose 
which factors of city life and city services lead to a resident's choice to leave the city [95]. 
Also data mining can be used to notice criminal individuality deceptions by analyzing people information such as name, address, 
date of birth, and social-security number [96] and to uncover previously unknown structural patterns from criminal networks 
[139].In transport system, data mining can be used for map modification according to GPS traces [97–100], and based on numerous 
users’ GPS trajectories researchers discover the interesting locations and classical travel sequences for location recommendation and 
travel recommendation [101]. 
 
E. Summary 
The data mining application and nearly everyone popular data mining functionalities can be summarized in Table 1. 

 

Table 1 The data mining application and most popular data mining functionalities. 

 

Table 1 The data mining application and most popular data mining functionalities. 

 
View larger version 

IV. CHALLENGES AND UNLOCK RESEARCH ISSUES IN IOT AND BIG DATA AGE 

The fast development of IoT, big data, and cloud computing the most basic challenge is to discover the huge volumes of data and 
take out useful information or knowledge for expectations actions [102]. The key characteristics of the data in IoT age can be 
measured as big data they are as follows. 

1) Huge volumes of data to read and write: the quantity of data can be TB (terabytes), even PB (petabytes) and ZB (zettabyte) so 
we require exploring fast and effectual mechanisms. 

2) Heterogeneous data sources and data types to integrate in big data age the data sources are miscellaneous for example we need 
to put together sensors [103–105], cameras, social media all these data are different in format, byte, binary and string, number. 
We require to converse with different types of devices and also need to extract data from web pages. 
 

A. Challenges 
There are plenty of challenges when IoT and big data approach the amount of data is big but the superiority is low and the data are 
various from different data sources  heterogeneous, as-structured, semi structured, and even entirely unstructured. We analyze the 
challenges in data extracting, data mining algorithms, and data mining system region. Challenges are summarized under. 
1) The first challenge is to access, extracting big data from different data storage locations. We need to contract with the diversity, 

heterogeneity and noise of the data and it is a large challenge to find the error and even harder to correct the data. In data 
mining algorithms region how to adapt traditional algorithms to big data atmosphere is a big challenge. 

2) Second challenge is how to mine unsure and unfinished data for big data applications. In data mining system an effectual and 
safety solution to share data between different applications and systems is one of the mainly vital challenges since responsive 
information such as banking dealings and medical minutes should be a matter of concern. 
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B. Unlock Research Issues 
In big data age there are some unlock research issues counting data inspection, parallel programming model, and big data mining 
structure. 
1) Lots of researches on finding errors unseen in data such as [106] cleaning, filtering, and reduction mechanisms. 
2) Parallel programming model is introduced to data mining and some algorithms are adopted to be practical in it. Researchers 

have expanded obtainable data mining methods in many ways. For example parallel association rule mining [107, 108] and 
parallel k-means algorithm based on Hadoop stage are good practice. But there are still some algorithms which are not adapted 
to parallel platform. 

3) The most significant work for big data mining system is to expand a well-organized framework to support big data mining. We 
need to consider security, privacy, data sharing mechanism and growth of data size. A well calculated data mining framework 
for big data is a very important way and a big challenge. 
 

C. Current Works of Big Data mining system for IoT 
In data mining system area many great companies as Facebook, Yahoo, and Twitter advantage and contribute works to open source 
projects. Big data mining infrastructure includes the following. 
1) Apache Mahout Project equipment a broad range of machine learning and data mining algorithms [109]. 
2) R Project is a programming language and software environment planned for statistical computing and visualization [110]. 
3) MOA project performs data mining in real time [111] and SAMOA [112] project integrates MOA with Strom and S4. 
4) Pegasus is a pet scale graph mining records for the Hadoop platform [113]. 
Some researchers from IoT region also projected big data mining system architectures for IoT and these systems center on the 
combination with devices and data mining technologies [114]. Figure 6 shows architecture maintains of social network and cloud 
computing in IoT. They included the big data and KDD into the extraction, management and mining, and interpretation layers. The 
extraction layer maps onto the insight layer.  

 
Figure 6 Big data mining system for IoT. 

D. Recommended System Architecture  for IoT 
In this system it includes 5 layers as shown in Figure 7. 
1) Devices: lots of IoT devices such as sensors, RFID, cameras, and other devices, can be incorporated into this system to 

apperceive the world and produce data continuously. 
2) Raw data: in the big data mining system structured, semi structured, and unstructured data can be integrated. 
3) Data collect: real-time data and batch data can be supported and all data can be parsed, analyze, and compound. 
4) Data processing: lots of open source solutions are integrated, including Hadoop, HDFS, Storm, and Oozie. 
5) Service: data mining functions will be providing as service. 
6) Security/privacy/standard: security, privacy, and standard are very significant to big data mining system. Security and privacy 

defend the data from illegal access and privacy revelation. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue VII July 2021- Available at www.ijraset.com 
     

 
3358 ©IJRASET: All Rights are Reserved 

 
Figure 7 The suggested big data mining system. 

V. CONCLUSIONS 
The Internet of Things idea arises from the need to supervise, computerize, and explore all devices, instruments, and sensors in the 
world. In arrange to make intelligent decisions both for community and for the things in IoT, data mining technologies are included 
with IoT technologies for decision making maintain and system optimization. Data mining involves discovering narrative, 
motivating, and potentially practical patterns from data and applying algorithms to the taking out of hidden information. In this 
paper, we survey the data mining in three different views: knowledge view, technique view, and application view. In knowledge 
view we analysis classification, clustering, association, time series and outlier analysis. In application view we analysis the typical 
data mining application, including e-commerce, industry, health care, and public service. The technique view is discussed with 
knowledge view and application view. At the present time, big data is a hot topic for data mining and IoT. We also converse about 
the new characteristics of big data and examine the challenges in data extracting, data mining algorithms. Based on the survey of the 
present research a optional big data mining system is proposed. 
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