

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 9 Issue: VIII Month of publication: August 2021 DOI: https://doi.org/10.22214/ijraset.2021.37747

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Finite Element Analysis of I-Girder Bridge

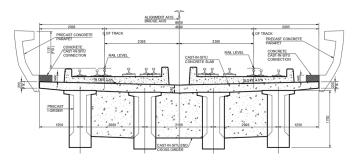
Mohd Nadeem¹, Mirza Aamir Baig²

¹M. TECH (Structural & Foundation Engineering), Department of Civil Engineering AL-FALAH UNIVERSITY, Faridabad, INDIA ²(Assistant Professor), Department of Civil Engineering AL-FALAH UNIVERSITY, Faridabad, INDIA

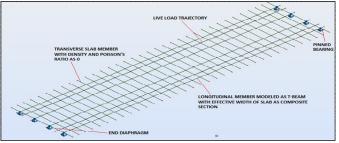
Abstract: In India railway bridge structures are widely designed with the method suggested by IRS – Concrete bridge code 1997. This Code of Practice applies to the use of plain, reinforced and prestressed concrete in railway bridge construction. It covers both in-situ construction and manufacture of precast units. The Code gives detailed specifications for materials and workmanship for concrete, reinforcement and prestressing tendons used in the construction of railway bridges. After defining the loads, forces and their combinations and requirements for the limit state design, particular recommendations are given for plain concrete, reinforced concrete and prestressed concrete bridge construction. The design of I-Girder bridge superstructure (deck slab and PSC I-beam) are done by calculating bending moments, shear forces, bending resistance in transverse direction, bending resistance in longitudinal direction, checking flexural cracking. The Design of PSC I-Girders is done for Bending moments and Shear forces by Dead Load, Super Imposed Dead Load (SIDL) and Live Loads (LL). The Shrinkage strain, Creep Strain and effect of Temperature rise and fall are also determined. The design is complete for Pre-stressing cables, un-tensioned reinforcements, End cross girder, Shear connectors. I-girder superstructures are the most commonly used superstructures at cross-over location in metro bridges in india, as it has the wide deck slab and it easily permits metro's to change tracks. I-Girder superstructure construction is component wise construction unlike U-Girders. I-Girders are constructed in casting yard and its deck slab is cast in situ, parapets are also installed on later stage.

Keywords: SIDL effects, Live Load effects, Derailment effect, with or without 15% future PT margin I. INTRODUCTION

A bridge is a structure designed to cross physical barriers, such as water, a water body, a valley, or a highway. Bridge designs vary depending on the function of the bridge, the nature of the land on which the bridge is built and established, the materials used to build it, and the funds available for its construction. Building a bridge is of global importance today. Bridges are the key elements in any road network and use of prestress girder type bridges gaining popularity in bridge engineering fraternity because of its better stability, serviceability, economy, aesthetic appearance and structural efficiency. Bridges are nation's lifelines and backbones in the event of war. These include barriers that divide people, societies, and nations, and bring them closer together. They shorten distances, speed transportation and facilitate commerce. Building bridges is very important in communication and an important element in the development of civilization. Bridges stand as an illustration of the work of civil engineers. In order to supply safer and larger speed of traffic, the route is made as straight as possible. Box girder bridges have gained wide acceptance in superhighway and bridge systems owing to their structural potency, higher stability, use ableness, economy of construction and pleasing aesthetics. In U.S, Bridge Engineers use the code of AASHTO "American Association of state highway and Transportation Officials"; this code will be adopted for style of the highway bridges with special needs. Similarly, Indian bridge engineers seek advice from the IRC (Indian Road Congress) commonplace to try to the planning. But the AASHTO commonplace Specification is adopted by several countries because the typically accepted code for bridge styles. The design parameters are check and verify by the structural analysis program (Cosi BRIDGE). Design is a very important part of the bridge that determines the safety of the general context and the basic cost of the project. Therefore, the choice of the correct and appropriate code will save ahigh value of the cost of construction, in addition to the safe and successful design. To decide the size (dimension) of the member and the amount of reinforcement required. To check the weather adopted section will perform safely and satisfactorily during the life time of the structure. Design philosophy, loading and unloading patterns and safety factors. Shear force and Bending Moment induced in the components, Reinforcement required for each design, from these comparative studies, we can have idea about the best design standards.



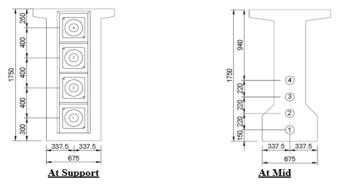
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429


Volume 9 Issue VIII Aug 2021- Available at www.ijraset.com

To design and analyse the I-Girder bridge superstructure. It is a component wise design system. The design is done by considering the loads such as dead load, super imposed dead load and live load. PSC I-Girders are being analysed by considering 15% margin for future PT. Deck slab to be designed for normal live load cases and for derailment cases.

III. METHODOLOGY

The 3D model for the superstructure to be modelled in AUTODESK ROBOT software and is modeled as bar element taking into account the exact properties of I-Beam (at the support section and mid-section along with the properties of slab i.e. composite section), diaphragm, and deck slab (modeled as bar element with unit weight=0 & Poisson's ratio=0), as per final design. In order to transfer loads from one I-Beam to the other transverse rigidity is provided in the form of transverse members which include diaphragms and slab. Bearing (whichever applicable) is provided underneath the I-Girder in order to extract the exact forces under each bearing. Longitudinal spacing of bars is as per the spacing of the I-girders and transverse spacing of bars varies depending on the section. Since cross girders are present here in the structure, in the modeling slab has been omitted from those portions. The clear reason being the rigidity of slab should be taken into account only once.



A. Longitudinal Analysis

The extracted bearing forces and moments from AUTODESK ROBOT shall be applied on ST1 software and perform the longitudinal analysis for PSC I-Girder.

- ST1 is a Finite elements Method programme. It takes into account the phenomena specified below:
- 1) Actual Construction Stages: Time variations of both topology and loading.
- 2) Effect of Time on materials: Creep, Shrinkage of concrete and Prestressing losses (instantaneous and long term losses)

The prestressing layout for I – Beam are shown below.

B. Construction Sequence

The following are the construction stages which are considered for the verification of I-Beam.

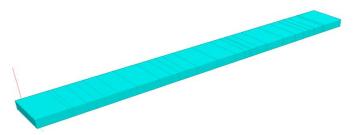
-		
STAGE	ACTION	WITH SECTION PROPERTIES
1.	Casting of I-beam in casting yard	Single I-beam only
2.	SW(Single I-beam) + PT(After Short term Losses due to PT)	Single I-beam only
3.	Stage 2 + Self Weight of slab + Diaphragm	Single I-beam only
4.	Stage 3 + SIDL	Composite Section :- I-beam + Slab
5.	Stage 4 + LL + Impact	Composite Section :- I-beam + Slab

C. Load Combinations

IRS CBC-1997 Table 12

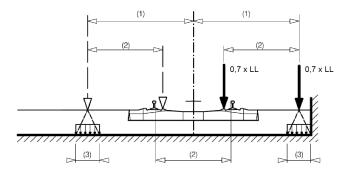
	LOAD	LIMIT	Y	Y _{fl.} TO BE CONSIDERED IN COMBINATION			
		STATE	1	2	3	4	5
	Dead weight of concrete	ULS	1.25	1.25	1.25	1.25	1.25
	bend height of concrete	SLS	1.00	1.00	1.00	1.00	1.00
	Superimposed dead load	ULS	2.00	2.00	2.00	2.00	2.00
		SLS	1.20	1.20	1.20	1.20	1.00
Wind	During erection	ULS	-	1.25	-	-	-
		SLS		1.00	_		-
	with dead and superimposed dead						
	loads only and for members primarily	ULS		1.60			-
	resisting wind loads.	SLS	•	1.00			· · · ·
	With dead plus superimposed dead	ULS		1.25	-		
	plus other appropriate combination 2 loads.	SLS		1.00	×		
	Relieving effect of wind	ULS		1.00	•		
		SLS	-	1.00	-		-
Earth	During erection	ULS		1.25			-
quake	820	SLS	15	1.00			<u>*</u>
	With dead and superimposed dead	ULS		1.60			
	loads only	SLS		1.00			
	With dead plus superimposed dead	ULS		1.25		<u></u>	
	plus other appropriate combination 2 loads.	SLS	-	1.00			1
Temperat	Restraint against movement except	ULS			1.50		-
ure	frictional	SLS			1.00		-
	Frictional restraint	ULS				1.50	•
	and the second sec	SLS				1.00	
	Differential temperature effect	ULS			1.15		
		SLS		-	0.80	0.04	
Differentia	l settlement	ULS	0	As specified by engineer			
101 104	Fill retained and or live load	ULS	1.70	1.70	1.70	1.70	-
Earth	surcharge	SLS	1.00	1.00	1.00	1.00	
Pressure	relieving effect	ULS	1.00	1.00	1.00	1.00	-
Erection to	emporary loads (when being considered)	ULS	•	1.30	1.30		•
	Live load on foot path	ULS	1.50	1.25	1.25		
	1010-00110-017-00-00005428-0-014	SLS	1.00	1.00	1.00		: etc.
	Live load	ULS	1.75	1.40	1.40		
		SLS	1.10	1.00	1.00		
	Derailment loads	(As spe	cified by br	idge rules	for comb	ination 5 d	only)

PSC I-Girders are design for load combination 1 as it is the critical case.

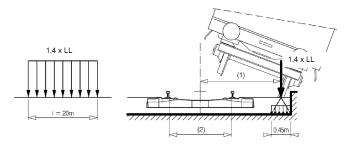

D. Design Criteria

Stage	Allowable compressive strength	Value	Allowable tensile stress	Reference
Construction	0.5 <u>fci</u> but < 0.4 <u>fck</u>	24 MPa	-1 MPa	IRS
Service	0.4 <u>fck</u>	24 MPa	No tension	

E. Transverse Analysis


The transverse analysis is done for the most critical section of deck slab in STAAD Pro. Slab is designed as per meter width element choosing the most critical position of live load. The analysis is for the normal case and derailment cases.

F. Derailment Load

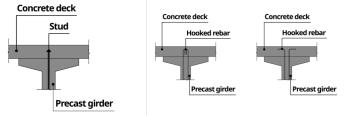

Vertical derailment load is calculated According to EN 1991-2 §6.7, two design situations shall be considered:

1) Design Situation I: derailment of railway vehicles, with the derailed vehicles remaining in the track area on the bridge deck with vehicles retained by the adjacent rail or an upstand wall. The part of the structure concerned shall be designed for the following design loads in the Accidental Design Situation: 1.4*LL parallel to the track in the most unfavourable position inside an area of width 1.5 times the track gauge on either side of the center-line of the track, as shown in the figure below:

- a) : max 1.5s or less if against wall
- b) : Track gauge (s)
- *c)* : The point forces may be assumed to be distributed on a square of side 450mm at the top of the deck if vehicle remains on track plinth. If not, the point forces will be directly applied to the deck.
- 2) *Design Situation II:* derailment of railway vehicles, with the derailed vehicles balanced on the edge of the bridge of the bridge and loading the edge of the superstructure (excluding non-structural elements such as walk ways).

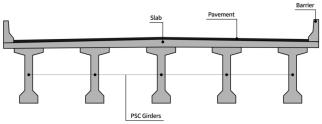
For this Design situation, the bridge should not overturn or collapse. For the determination of overall stability, a maximum total length of 20m of 1.4*LL(AW0) shall be taken as a uniformly distributed vertical line load acting on the edge of the structure under consideration, as shown in the figure below:

- a) Load acting on edge of structure
- b) Track gauge (s)


ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue VIII Aug 2021- Available at www.ijraset.com

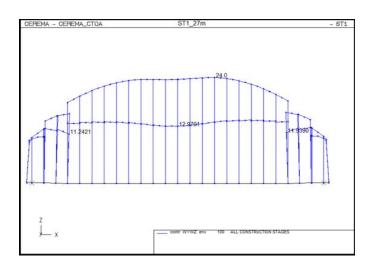
G. Design Criteria

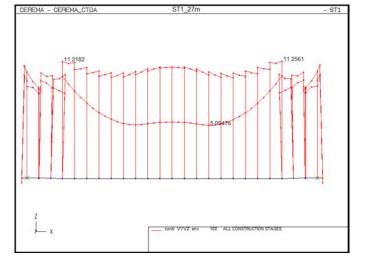
M/Mu	ALLOWA BLE Ec (Mpa)	ALLOWA BLEFs (Mna)	ALLOWA BLE CRACK WIDTH (mm)
M/Mu < 1	0.5 Fck	0.75 Fy	0.25


H. Shear Connectors

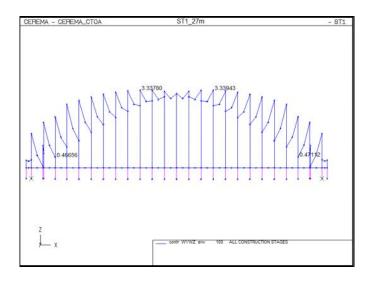
The shear connector is installed on the girder and integrated with the concrete deck so that girder and the concrete deck work together. It is mainly installed by embedding the shear connector in the concrete girder. As for the forms of the shear connectors have been proposed and studied in consideration of the binding capacity of girders and concrete decks, and the work efficiency of construction workers.

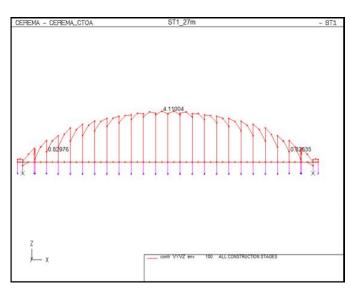
IV. CONCLUSION


The bridge can be composed of 1 span or multi span with 20~40m per span. Depending on the shape and construction method of the beam, the length of one span can be as long as 50m.

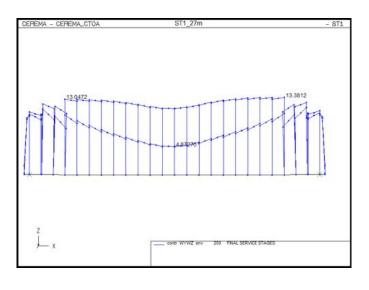

The grillage model distributes the loads through transverse members.

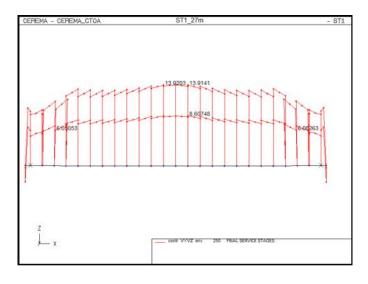
Depending upon the bending moment diagram obtained from AUTODESK ROBOT software a parabolic cable profile is provided.

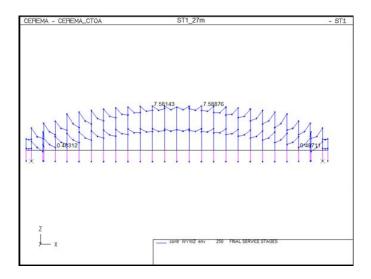

- A. Stresses in Construction stage (with 15% margin)
- 1) Beam Bottom

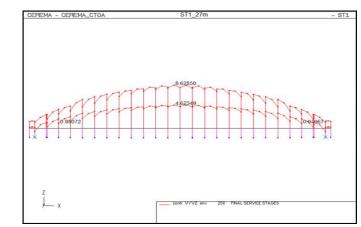


3) Slab Bottom

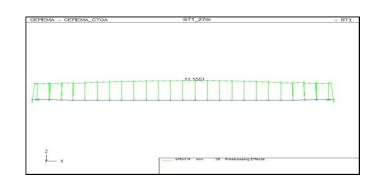


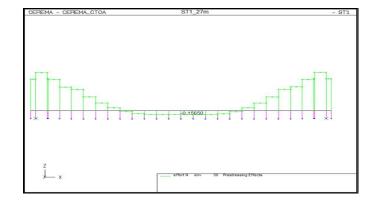



- B. Stresses in service stage (with 15% margin)
- 1) Beam Bottom


2) Beam Top

3) Slab Bottom





The above stresses are in limit as per the design criteria.

- C. Prestressing Losses
- 1) Beam

Therefore,

Total Prestressing force at Ultimate Stage (After all losses) = (11.1551-0.15650) = 10.999 MN

Total Prestressing Losses: -

Total Actual Jacking Force = 72 * (0.765 * 1860) * 140/10^6 = 14.343 MN

After all losses, effective pre-stressing force at long term = 10.999 MN (Refer above sketches) Losses due to Prestressing: -

= (1- (10.999/14.343)) = 23.3%

D. Flexure Verification

	ials Param	eters :			
	fok	=	60	N/mm²	: Characteristic Compresive Strength of Concrete
	fpu	=	1860	N/mm ²	: Characteristic Strength of Prestressing Tendons
	Ep	=	195000	MPa	: Modulus of Elasticity of Prestressing Tendons
.) Sectio	n Propert	ies :			
	Sx	-	1.358	m²	: Cross Sectional Area
	1	=	0.594	m ⁴	: Inertia of Section
	Yg	=	1.211	m	: Distance from Bottom fiber to the Center of Gravity of Section
	Tr	=	0.240	m	: Average Thickness of Flange
	Br	=	2.055	m	: Average Width of Flange
	н	=	1.990	m	: Total Height of Section
	Tw	=	0.390	m	: Thickness of Web
	d	=	1.491	m	: Distance from Top fiber to the COG of Tendons
	A ₁	=	0.660	m²	: Area of Flange (See Fig. below)
		16 16 19 19	0.150 0.370 0.590 0.810		
	As	=	0.00014	m²	: Area of Strand
	Ns	=	70		: Total no. of Strands
	ep	=	0.499	m	: C.O.G of Strands from Bottom Fiber of Section
	Npeff	=	10.365	MN	: Effective Normal Force due to prestressing after all Losses
) Analys	sis :	Assumpt	tion : Position of	Neutral Axis	s 'y' lies within the Flange 🚗 X = 0.321 m
		Bf		X H .	$f_{c_{a_{c}}} = 0.4t_{a_{c}} + A_{c}$ $F_{c} = 0.4t_{a_{c}} + A_{c}$
Tf¢Ĺ	_				
Tf∳Ĺ		īw			d-0.5X

	4fok*A1			
F ₁	=	15.847	MN	F _o due to A ₁
M ₁	=	21.084	MN-m	: M_o due to A_1
Fe=	15.847 M	IN .		
M _o =	21.084 N	/N-m		
Calculation	of Fp :			
80	=	0.00542 DK, in the	alastia d	: Initial Strain due to prestress after all Losses
ε0	-	0.01274	elustie u	: Strain due to prestress
50+50	=	0.0182		Total Strain due to prestressing
Op.	=	1617	N/mm ²	Stress due to prestressing (Corresponding to Total Strain, e,+e)
Fp	=	15.847	MN	: Fp due to prestress
Î	$F_c - F_p$:	0.00		
eck :				
M	=	21.084	MN-m	: Capable Ulimate Moment of the Section
Mu	=	12.892	MN-m	: Applied Ulimate Moment (ULS-GI :- 1.25DL+2SIDL+1.75LL)
				Mu (MN-m)
				DL 2.784
				SIDL 2.822
				LL 2.152 12.892
005+fpu/Esys	=	0.0133		
α	=	1.00		: Implification Factor (Refer CI 16.4.3.1,e)
$M_u final = M_u^* \alpha$	=	12.892	MN-m	: Applied Ulimate Moment (ULS-GI :- 1.25DL+2SIDL+1.75LL)

E. Shear Verification

.) Input Date			
b	=	0.317	m : Thickness of Web
н	-	1.990	m : Total Height of Section
A	-	1.358	m ² : Cross Sectional area of I - Girder
fee	-	60	N/mm ² : Characteristic Compresive Strength of Concrete
d		1 491	m : Distance from Top fiber to the COG of tendons
u I	-	0.594	m4 : Inertia of Section
Y	=	1.171	m : Distance from Bottom fiber to the Center of Gravity of Section
W	=	0.819	m : Distance from Top fiber to the Center of Gravity of Section
eo	=	0.672	m : Distance between C.O.G of Section to C.O.G. of Tendons
	=	415	N/mm ² : Characteristic Strength of Link Reinforcement
f _{yv} V _u	=	1.583	MN : Applied Ulimate Shear Force (ULS-GI := 1.25DL+2SIDL+1.75LL)
			Vu (MN) Mu (MN - m) DL 0.308 0.647
			SIDL 0.317 0.651
			LL+I 0.322 0.662
			1.583 3.271
ft N f _{cp}	= = =	9.018 6.641 1.678	N/mm ⁴ : Maximum principal tensile stress at the centroidal axis MN : Normal Force due to Prestressing after all losses (with 0.87 factor) N/mm ² : Compressive Stress at the Centroidal axis due to PT MN
V _{co}			NUL I
f _{et}	=	18,596	N/mm ² ; Stress at the Tensile Fiber due to PT only with 0.87 factor
Ma	=	10.881	MN-m : Cracking Moment at the Section Considered
Var	=	5.401	MN : Maximum Shear and Corresponding Bending Moment (At Support
s	ection is	s Uncrack	ed
4.) Shear Reir	forcemen	it :	
Vu	=	1.583	MN : Applied Ulimate Shear Force (ULS-GI :- 1.25DL+2SIDL+1.75LL)
Vo	=	1.678	MN : Minimum of V _{co} and V _{cr}
		3.51	Cm ² /m : Reinforcement for Webs
A _{sv} /S _v			
51 15 • • • • • • • • • • • • • • •	Shear Str	ess :	
A _{sv} /S _v 5.) Maximum : V	5hear Str	3.352	N/mm ² : Applied Shear Stress
5.) <mark>Maximum</mark> :	5hear Str = =		N/mm² :Applied Shear Stress N/mm² :IRS, Table 26: Maximum Shear Stress

F. Shear Connector at support Verification

CALCULATIC	ON OF LON	IGITUDINAL	SHEAR : I	RC-22-1986.CLAUSE : 608.2.2
V1	=	23.237	Ton	:Ultimate Vertical Shear due to Dead load of slab (Ult. Factor = 1.25)
V ₂	=	82.705	Ton	:Ultimate Vertical Shear due to SIDL, (From ST1), (Ult. Factor = 2)
V ₃	=	106.397	Ton	:Ultimate Vertical Shear due to Live Load, (From Robot), (Ult. Factor = 2.5
V	=	212.339	Ton	:Total Ultimate Vertical Shear force
Ac	=	0.540	m ²	:Transformed Compressive area of Concrete above the neutral axis
Y	=	0.699	m	Distance from N.A. to the centroid of area under consideration
1	=	0.646	m ⁴	:Moment of Inertia of the whole transformed section
Vi	=	124.166	Ton/Im	:Longitudinal Shear per unit Length, $V_I = V A_C Y / I$
ALCULATIO	ON OF RES	SISTANCE O	OF THE SEC	
140				
Where, As	=	0.0042	m²/lm	(Required Reinforcement) = $V_L / (0.7^* \sigma_v)$
d	=	0.016	m	Diameter of shear connector
n	=	4	no, of lea	for T16
S	=	0.150	m	:Spacing of shear connector along the lengths of I-Beam
d	=	0.016	m	:Diameter of shear connector
n	=	2	no. of leg	for T16
S	=	0.300	m	:Spacing of shear connector along the lengths of I-Beam
As	=	0.0067	m²/lm SHEAR C	:Cross sectional area of the shear connector per unit length of I-Beam ONNECTOR ARE OK
σγ	=	42304	T/m ²	:Yield stress of the reinforcing
D	=	0.240	m	:Depth of slab
CHECK FOR	SPACING	OF SHEAR	CONNECTO	DR : IRC-22-1986.CLAUSE : 612.4.3
The spacing o times the dep			not be less SPACING	than 0.7 times the depth of slab and shall not be greater than two IS $\rm OK$
CHECK FOR	MINIMUM	REINFORCI	EMENT : IR	C-22-1986,CLAUSE : 612.2.2
				the precast element shall be extended into the cast-in-situ concrete .15 percent of the contact area or 130 sq. mm per meter of the span.
ACONTACT	=	0.875	m ²	: Contact Area

- G. Deck Slab
- 1) Flexure Verification

Section 1 Details	Key 131% renforcement Analysis Case 2 Reference Post Refuelt Avia C compression Side rm Crace Width C Controlling Max Crack Max Crack Width O Bar Controlling Max Crack
Serviceability Analysis - Loads	
Case N M ₂₀₀ M ₂₀₀ M 6 [130] [430] [430] [430] [430] 1 0.0 - 76.50 0.0 - 76.50 - 180.0 2 0.0 14.94 0.0 14.94 0.0	
Section Material Stresses/Strains at SLS Loads	
Case Point Coordinates Notes y z Strain Stress	
[mm] [mm] [-] [N/mm*] Maximaa 1 2 500.0 -120.0 428.0E-6 13.45	
1 2 500.0 -120.0 428.0E-6 13.45 Minima	
1 4 -500.0 120.0 -0.001212 0.0 1 1 500.0 120.0 -0.001212 0.0	
Reinforcement Stresses/Strains at SLS Loads	
Case Bar Coordinates Notes	
y z Strain Streas [mm] [mm] [-] [N/mm ²] Maxima	
1 15 450.0 -72.00 100.1E-6 20.02 FE-500 1 15 450.0 -72.00 100.1E-6 20.02 FE-500	
Minima 6 -450.0 72.00 -883.7E-6 -176.7 FE-500 1 6 -450.0 72.00 -883.7E-6 -176.7 FE-500	
Crack Widths at SLS Loads	
Crack widths calculated at 20mm intervals	
Case Face Point Coordinates Strain E _m Strain E ₁ b _t Control Bar a _{GE} Cover x Crack	h
Width ۲ Cmin Fit [mm] [mm] [mm] [mm]	rom [mm]
[mm] [mm] (mm, (mm,) Maxima 1 4 110 100.0 120.0 -0.001212 -0.001212 1.000 18 61.31 40.00 Face 240.0 62.65 0.2229	
Strength Analysis - Summary	
Governing conditions are defined as: λ - reinforcing steal tension strain limit B - concrete compression strain limit Effective centroid is reported relative to the reference point.	
Case Eff. N Mass M/Ms Governing Heutral Neutral Controid Condition Axis Axis Axis (r) (x0) (x00) (x00) (x10) Axis Maxima - (x0) (x00) (x10) (x10) (x10) 1 -0.5731 0.8253 0.0 -156.9 -189.1 0.4255 B: Hode 1 2 -0.5731 0.8253 0.0 2.7.4 153.1 0.1277 B: Hode 1	
Fic (Mina) Fis (Mina) CRACK WIDTH M/Mu ALLOWABLE E: (Mina) ALLOWABLE E: (Mina) ALLOWABLE CRAC 13.45 176.7 0.2229 0.8295 22 375 0.259	K REMARK mm)

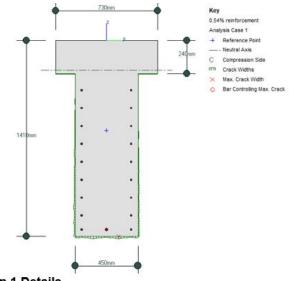
H. Cross-Girder

1) Summary

=	Sagging
=	Hogging

+_{ve}

Table 4. Bending Moment							
Combination	Load Case	Nature	Max BM (k̪ས̯-m)				
SLS	DL+1.2SIDL	Max + ve	943.391				
313	DL+1.23IDL	Max - ve -135.605					
ULS	1 3501 (3510)	Max + ve	1374.85				
	1.25DL+2SIDL	Max - ve	-180.179				


	Table 5. Shear Force								
Combination	Load Case	Nature	Max SF (kt)						
SLS	DL+1.2SIDL	Max	1413.32						
ULS	1.25DL+2SIDL	Max	2059.70						

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 9 Issue VIII Aug 2021- Available at www.ijraset.com

2) Verification for Sagging moment

Section 1 Details

0.54% reinforcement in section 1 (Section 1). Check this against code requirements.

Notes

Serviceability Analysis - Loads

	Myy		
	[kNm] 135.6		

Section Material Stresses/Strains at SLS Loads

		Y [mm.]	s. [mm.]	Strain [-]	Stress [N/mm ²]
Maxima					
1	1	365.0	0.0	55.87E-6	1.756
1	1	365.0	0.0	55.87E-6	1.756
Minima					
1	4	225.0	-1410.	-313.5E-6	0.0
1	2	365.0	-240.0	-7.002E-6	0.0

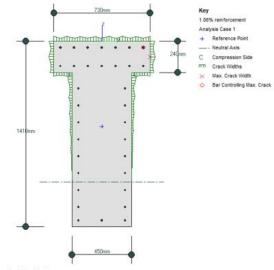
Reinforcement Stresses/Strains at SLS Loads

Case B	ar	Coord	inates			Notes	
		У		Strain	Stress		
		[mm.]	[mmn]	[-]	[N/mm ²]		
Maxima							
1	1	177.0	-360.0	-38.44E-	-6 -7.688 rebar	r 500	
							,
1	1	177.0 -	-360.0	-38.44E-6	-7.688 rebar 50	0	
Minima							
1	17	-177.0 -	-1362.	-300.9E-6	-60.18 rebar 50	0	
1	17	-177.0 -	-1362.	-300.9E-6	-60.18 rebar 50	0	

Crack Widths at SLS Loads

Maximum Crack Width per Face

Crack widths calculated at 20mm intervals Case Face Point Coordinates Strain E_m Strain E₁ b_L Control Bar a_{GK} Cover h x Crack Width y s cmin [rmm] [rmm] [rmm] [rmm] [rmm] [rmm] [rmm] 1 4 4 85.00 -1410. -313.5E-6 -313.5E-6 0.4500 18 89.62 40.00 Face 4 1410. 213.3 0.07783 Strength Analysis - Summary


Case Eff. Centro: (y)	Eff. id Centraid (z)		M	Mu	n/nu	Govern: Condit:		Neutral Axis Angle	Axis Depth
		[<u>%N</u>]	[<u>k]</u>	[<u>}}%</u>]				[°]	[mm.]
Maxima									
1 -120.9	E-9 -25.4	6 0.0	180.2	1414.	0.1274	B: Node	1		
Minima									
1 -120.9	E-9 -25.4	6 0.0	180.2	1414.	0.1274	B: Node	1		

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 9 Issue VIII Aug 2021- Available at www.ijraset.com

3) Verification for Hogging moment

Section 1 Details

1.06% reinforcement in section 1 (Section 1). Check this against code requirements.

Notes

Serviceability Analysis - Loads

Case N M_{NN} M₈₈₆ M 0 [kN] [kNm] [kNm] [kNm] [*] 1 0.0 -943.4 0.0 943.4 -180.0

Section Material Stresses/Strains at SLS Loads

		1.000000000	<u> </u>	Strain	Stress
		¥	z	Strain	
		[rom]	[mm.]	[-]	[N/mm ²]
Maxima					
1	5	-225.0	-1410.	334.3E-6	10.51
1	-5	-225.0	-1410.	334.3E-6	10.51
Minima					
1	1	365.0	0.0	-0.001040	0.0
1	1	365.0	0.0	-0.001040	0.0

Reinforcement Stresses/Strains at SLS Loads

Case	Bar	Coord	inates			Notes
		Y		Strain	Stress	
		[mm.]	[mmn]	[-]	[N/mm ²]	
Maxin	na					
1	17	-177.0	-1362.	287.6E	-6 57.51 r	ebar 500
1	17 -	177.0 -:	1362.	287.6E-6	57.51 rebax	500
Minima						
1	20 -	315.0 -	50.00	-990.8E-6	-198.2 rebas	500
1	20 -	315.0 -	50.00	-990.8E-6	-198.2 rebas	500

Crack Widths at SLS Loads

Maximum Crack Width per Face Crack widths calculated at 20mm intervals Case Face Point Coordinates Strain Em Strain E1 bt Control Bar Cover acr h ж Crack Width From У Cmin [mm] [mm] [mm] [mm] [mm] [mm] Maxima [mm] Maximma 1 1 1 365.0 -120.0 -922.6E-6 -922.6E-6 0.7300 1410. 343.1 0.1971 26 76.02 40.00 Face 1 Strength Analysis - Summary

Case	Eff. Centroid (y)	Eff. Centroid (z)	N	M	Mu	M/Mu	Governing Condition	Neutral Neutral Axis Axis Angle Depth
	-2		[<u>k</u> N]	[kNm]	[<u>kNm</u>]			[°] [mm]
Maxin	na							
1	0.0	-27.52	0.0	1375.	2540.	0.5413	B: Node 4	
Minim	18							
1	0.0	-27.52	0.0	1375.	2540.	0.5413	B: Node 4	

4) Shear Verification at support

						Bridge Code.1997,	
Input Date	1:						
b	=	0.450	m	: Thickness	of Web		
н	=	1.410	m	: Total Heigh	t of Section		
A	=	0.702	m²	: Cross Sect	ional area of End	cross girder	
fck	=	55	N/mm ²	: Characteris	tic Compresive S	trength of Concrete	
d	=	1.350	m			to the COG of Reinforce	ement
1	=	0.126	m4	: Inertia of Se	and the second se		
Y	=	0.761	m			o the Center of Gravity of	
Wg	=	0.649	m			e Center of Gravity of Se	
eo	=	0.000	m			Section to C.O.G. of Te	
fyv	=	415	N/mm ²			nk Reinforcement, fy < 4	
Vu	=	2.060	MN	: Applied Uli	mate Shear Force	e (ULS-GI :- 1.25DL+2SI	DL+1.75LL)
				V. (MN)	Mu (MN - m)		
			DL	0.710	0.474		
			SIDL	0.586	0.391		
				2.060	1.375		
foo							
Voo	=	0.000	N/mm² MN	: Compressi	e Stress at the C		
		0.757		: Compressi	e Stress at the C		
V _{co} Section Cr	racked in	0.757 Flexure :	MN				
V _{co} Section Cr f _{pt}	eacked in	0.757 Flexure : 0.000	MN N/mm²	: Stress at th	ne Tensile Fiber d	lue to PT only (with 0.87	
V _{co} Section Cr f _{pt} M _{cr}	racked in = =	0.757 Flexure : 0.000 0.455	MN N/mm² MN-m	: Stress at th : Cracking M	e Tensile Fiber d oment at the Sec	lue to PT only (with 0.87 ction Considered	factor)
V _{co} Section Cr f _{pt}	eacked in	0.757 Flexure : 0.000	MN N/mm²	: Stress at th : Cracking M	e Tensile Fiber d oment at the Sec	lue to PT only (with 0.87	factor)
V _{co} Section Cr f _{pt} M _{cr} V _{cr}	racked in = = =	0.757 Flexure : 0.000 0.455	MN N/mm² MN-m MN	: Stress at th : Cracking M	e Tensile Fiber d oment at the Sec	lue to PT only (with 0.87 ction Considered	factor)
V _{co} Section Cr f _{pt} M _{cr} V _{cr}	ection is	0.757 Flexure : 0.000 0.455 0.85 s Uncrack	MN N/mm² MN-m MN	: Stress at th : Cracking M	e Tensile Fiber d oment at the Sec	lue to PT only (with 0.87 ction Considered	factor)
V _∞ <u>Section Cr</u> f _{pt} M _α V _α S	ection is	0.757 Flexure : 0.000 0.455 0.85 s Uncrack	MN N/mm² MN-m MN	: Stress at th : Cracking M : Maximum S	ne Tensile Fiber d orment at the Sec Shear and Corres	lue to PT only (with 0.87 ction Considered	factor) nt (At Support) s
V _{oo} Section Cr f _{pt} M _{or} V _{or} Shear Rein	ection is	0.757 Flexure : 0.000 0.455 0.85 s Uncrack t :	MN N/mm² MN-m MN	: Stress at th : Cracking M : Maximum S	te Tensile Fiber d oment at the Sec Shear and Corres mate Shear Force	tue to PT only (with 0.87 ction Considered ponding Bending Mome	factor) nt (At Support) s
V _{oo} Section Cr M _a V _a Shear Reir V _a V _a V _c	ection is section is s	0.757 Flexure : 0.000 0.455 0.85 s Uncrack t : 2.060 0.757	MN N/mm² MN-m MN ed MN MN	: Stress at th : Cracking M : Maximum S : Applied Ulin : Minimum o	te Tensile Fiber of oment at the Sec Shear and Corres mate Shear Force (V _{co} and V _{or}	tue to PT only (with 0.87 ction Considered ponding Bending Mome	factor) nt (At Support) s
V _∞ <u>Section Cr</u> f _{pt} M _α V _α <u>Shear Reir</u> V _u	acked in = = = section is nforcemen =	0.757 Flexure : 0.000 0.455 0.85 s Uncrack tt : 2.060	MN N/mm² MN-m MN ed MN MN	: Stress at th : Cracking M : Maximum S : Applied Ulin : Minimum o	te Tensile Fiber d oment at the Sec Shear and Corres mate Shear Force	tue to PT only (with 0.87 ction Considered ponding Bending Mome	factor) nt (At Support) s
V _{oo} Section Cr M _a V _a Shear Reir V _a V _a V _c	racked in = = = section is nforcemen = = =	0.767 Flexure : 0.000 0.455 0.85 s Uncrack ft : 2.060 0.757 31.72	MN N/mm² MN-m MN ed MN MN	: Stress at th : Cracking M : Maximum S : Applied Ulin : Minimum o	te Tensile Fiber of oment at the Sec Shear and Corres mate Shear Force (V _{co} and V _{or}	tue to PT only (with 0.87 ction Considered ponding Bending Mome	factor) nt (At Support) s
V_{co} Section Cr f_{pt} M_{cr} V_{cr} Shear Reir V_{u} V_{u} A_{uv}/S_{v}	racked in = = = section is nforcemen = = =	0.767 Flexure : 0.000 0.455 0.85 s Uncrack ft : 2.060 0.757 31.72	MN N/mm² MN-m MN ecd MN MN Cm²/m	: Stress at th : Cracking M : Maximum S : Applied Ulin : Minimum o	te Tensile Fiber d oment at the Sec Shear and Corres Shear And Corres mate Shear Force (V _{co} and V _{or} ent for Webs	tue to PT only (with 0.87 ction Considered ponding Bending Mome	factor) nt (At Support
V_{co} Section Cr f_{pt} M_{cr} V_{cr} Shear Reir V_{u} V_{u} A_{uv}/S_{v}	acked in = = = section is nforcemen = = = Shear Str	0.767 Flexure : 0.000 0.455 0.85 s Uncrack tt : 2.060 0.757 31.72 vess :	MN N/mm² MN-m MN ed MN Cm²/m N/mm²	: Stress at ti : Cracking M : Maximum S : Applied Ulin : Minimum o : Reinforcem : Applied Sh	te Tensile Fiber d oment at the Sec Shear and Corres Shear And Corres mate Shear Force (V _{co} and V _{or} ent for Webs	lue to PT only (with 0.87 ction Considered ponding Bending Mome a (ULS-GI :- 1.25DL+2SI	factor) nt (At Support

REFERENCES

- [1] Reinforced Concrete design by Devdas Menon & S. Unnikrishna Pillai
- [2] Bridge Deck Behaviour by Hambly E. Pennells. "Concrete bridge designer's manual".
- [3] IRS-CBC-1997 concrete bridge code for railways
- [4] BS:5400 Code of practice for Design of Concrete Bridges: Part-4-1990

MOHD NADEEM

- [5] French Code for Pre-stressed Concrete: BPEL 91
- [6] French Code for Reinforced Concrete: BAEL 91
- [7] Euro code EN-1991-2, Clause 6.7 for derailment check.
- [8] IRC:6-2000, effect of temperature variation in superstructure will be seen in longitudinal direction for both temperature rise as well as temperature fall.

BIOGRAPHY

Student of M.Tech-Structure and foundation (Alfalah University).

Mr. MIRZA AAMIR BAIG, Asst. Professor (Alfalah University)

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)