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Abstract: Generating realistic images from text is innovative and interesting, but modern-day machine learning models are still 
far from this goal. With research and development in the field of natural language processing, neural network architectures 
have been developed to learn discriminative text feature representations. Meanwhile, in the field of machine learning, generative 
adversarial networks (GANs) have begun to generate extremely accurate images of especially in categories, such as faces, album 
covers, and room interiors. In this work, the main goal is to develop a neural network to bridge these advances in text and image 
modelling, by essentially translating characters to pixels the project will demonstrate the capability of generative models by 
taking detailed text descriptions and generate plausible images. 
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I. INTRODUCTION 
Generating images according to human provided natural language descriptions is a fundamental problem in many applications, such 
as art generation and computer-aided design. There are many applications to developing such generative models like generating 
cartoon/Anime Characters, generation of Realistic Photographs, generation of a human face using AI to catch criminals based on 
characteristics during investigations and generation of image datasets without having to take photos, to name a few. The main 
motivation of this research is to devise a generative neural network that maps words to images by using natural language processing 
and machine learning techniques. 

II. DATASET AND IMPLEMENTATION 
A. Dataset 
The dataset consists of 102 flower categories. The flowers chosen while creating the dataset are the most commonly occurring flowers 
in the United Kingdom. Each category consists of between 40 and 258 images. The images have variations in large scale, pose and 
light. Additionally, there are categories that have large variations within the category and several very similar categories. 
 
B. Implementation 
The implementation can be seen in fig 4 and has the following steps: 
1) Sentence Encoding: Sentence Encoding is done through Skip-thoughts. It is simple neural networks model that contains an 

encoder and decoder network and is frequently used for learning fixed length representations of sentences in any Natural 
Language without any labelled data or supervised learning, it uses the ordering of sentences from a natural language corpus that 
is provided as training data. The main reason behind using a skip thoughts model is, this model uses the order of sentences to 
self-supervise itself by using a recurrent neural network that remembers the previous sentence and this leads to a better 
reconstruction of the neighbouring sentence. The decoders are trained to minimise the reconstruction error of the previous and 
the next sentences given the embedding of these sentences, the errors are then back propagated to the encoder. The product of 
this exercise is a trained encoder that can be used to generate skip through vectors. 

2) Training: The training starts by providing the encoded sentence and the images from the dataset as input to the generative 
adversarial network. The generative adversarial network essentially is made up of two neural networks, generator and a 
discriminator, the discriminator is trained to distinguish the real data instance from fake generated instance. Real data instances, 
such as real pictures of flowers are positive examples during training. Fake data instances created by the generator are negative 
examples during training. While the discriminator trains the generator is left untouched i.e., the weights do not change while it 
produces examples for the discriminator to train on. The generator training requires tighter integration between the two neural 
networks, once the generator creates a fake sample and sends as an input sample to the discriminator, based on the output from 
the discriminator, the generator is penalised and this generator loss backpropagated to improve the generator.  
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Fig. 1. Machine Learning pipeline for training and testing 

 
3) Testing: Once I have a trained generative adversarial network and a sentence encoder, we can pass in the user sentence that 

contains description of the flower to be generated as seen in Fig 1. The trained model produces the result as seen in Fig 2,3. 

 
Fig. 2. Image description 

 

 
Fig. 3. Generated images of first sentence 

 

 
Fig. 4. Generated images of second sentence 

III. LIMITATIONS 
A.  Time Consuming  
The time taken to train the model and to generate these images is substantial as the model must learn the features and generate them 
based on the caption.  
 
B.  Expensive 
 The resolution of the images is not of the highest quality because it is a very highly graphic intensive task and requires a capable 
GPU which can be expensive 
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IV. CONCLUSION 
To conclude the paper, the model that I have devised is able to generate plausible images that are quite similar to the user provided 
captions and this shows the huge potential GANs research and development holds, by being able to mimic any distribution of data 
generative adversarial networks can create worlds extremely similar to our own in any domain like: images, music. The applications 
can range from generating new music without copy rights to solving difficult criminal cases by using well developed generative 
models to generate images based on the criminal’s description. 

V. FUTURE SCOPE 
Dealing with the limitations of the proposed system for Generating high quality images based on the dataset is the most immediate 
feature that can be implemented on to the model. The datasets that can be successfully and efficiently used to train the model with 
different scenarios are limited. That scope can be explored to bring in diverse datasets to train the GAN model. Training with human 
faces is the most challenging aspect of the model considering the hardware and time required to make use of the trained model is 
limited with the resources as of now. Thus, the future scope of the project will concentrate more on fixing the limitations and 
bringing in various image samples and applying in various fields like animation sector where in an artist can create a rough idea of 
this imagination based on a simple text caption.  
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