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Abstract: The study of FinFET Response under various parameters change is widely studied in many branches of Electronics 
Engineering. FinFET structure is going beyond the downscaling limit of the conventional planar CMOS technology. The major 
applications of FinFET have been mainly devoted to digital circuits, analog circuits, and targeting a successful mixed 
integration of analog and digital circuits. The purpose of this paper is to provide a clear and exhaustive understanding of the 
state of the art, challenges, and future trends of the FinFET technology from a microwave modeling perspective. Inspired by the 
traditional modeling techniques for conventional MOSFETs, different strategies have been proposed over the last years to model 
the FinFET behavior at gamma radiation. With the aim to support the development of this technology, a comparative study of 
the achieved results is carried out to gain both useful feedbacks to investigate the microwave FinFET performance as well as 
valuable modeling. 
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I. INTRODUCTION 
MOSFET is the elementary unit in the high-density integrated circuits, known as ICs. When these elementary units interact with the 
high energy radiation, which is mostly present in space, like gamma radiation, cosmic radiation, and ultraviolet rays, we observe 
shifts in the characteristics of the devices from normal behavior. On the other hand, when we use a transistor for a certain period, its 
performance changing gradually. Some changes in the behavior of transistors are observed like the degradation in the performance, 
reliability and sometimes complete failure of the device is known as means transistor aging or silicon aging. This impact that aging 
cause is somewhat like what we observe in the case of radiation. Since in space, satellites are continuously using integrated circuits 
under high energy radiations so, it is very important to know that how aging will impact the radiation behavior of the transistor[9]. 
To observe this a comparative study of  the performance of bulk Si FinFET from these experimental setups: a) Radiation after stress 
and b) Stress after radiation. For this experiment, the radiation[11] used as gamma radiation and devices were bulk Si FinFETs from 
IBM USA. Finally, we concluded the overall impact of bias stress on radiation performance.  
 
1) FinFET is a Multigate Device: A Fin-shaped field-effect transistor has a fin-shaped body, so it is called FinFET. The channel 

(fin) of the FinFET is vertical. A simple MOSFET contains substrate, gate, source, and drain. But in the case of a  multigate 
device, the MOSFET device can have a  gate on two, three, or four sides of the channel. A double gate structure is made 
when we cover the channel with gate material from different sides. These devices come under the category of FinFETs. It is 
because of the shape of the gate which looks like a fin. The benefit of a FinFET device is that it has a high current density and 
faster switching time than a complementary metal oxide conductor (CMOS).  
Why FinFET instead of MOSFET? 
To understand that we need to understand the short channel effects (SCE). So, we will start with Moore’s law and scaling theory. 
It is an observation that suggests that the number of transistor available in an IC (integrated circuit) gets double every two years. 
When the number of transistors increases on the same IC it reduces the cost of the devices also increases the processing speed 
of the devices. Following are the SCE: 1) DIBL 2) Subthreshold swing 3) Velocity saturation 4) Punch-through 5) Hot carrier 
effects  

2) DIBL is a short channel effect in MOSFETs: It refers that when we apply a  higher voltage on the drain terminal then, 
it causes a reduction in the threshold voltage of the transistor. In the case of a large value of channel length of a transistor, the 
bottleneck in the formation of the channel happens very far from the drain region. So, in a way, there is no impact of drain 
voltage on the combination of gate and substrate. That’s why   threshold voltage is independent of drain voltage. But in the case 
of short channel devices, the drain region is very close to the gate of the channel. So, when we apply high drain voltage in a 
short channel transistor, it can turn on the transistor prematurely. 
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a) Subthreshold Swing: In the subthreshold region (is a region in which MOSFET is operating at the voltage little less than the 
threshold voltage[11] of the MOSFET), the behavior of the drain current is very much like the forward biased diode. It is 
considered good to have a smaller value of subthreshold swing. A high value of subthreshold swing causes a higher off-state 
current. 

b) Velocity Saturation: The drift velocity of electrons is directly related to the value of the electric field only for lower values of 
electric field. But in the case of the high value of the electric field, drift velocity gets saturated, which we called saturation 
velocity. In short channel MOSFET saturation current is almost linearly dependent on drain source voltage and output 
impedance also reduces. In short channel devices, the electric field in longitudinal direction also increases. Because of the high 
value of the electric field, a saturation of velocity occurs, and it also affects the MOSFETs’ I-V characteristics. 

c) Punch Through: It is an extreme case of barrier lowering. When we increase the bias applied at the drain region, the depletion 
region formed around the drain can easily get extended toward the source region and can cause the merging of the two 
depletion regions. In this case, the gate voltage doesn’t have control over the drain current. Another problem is that it leads to 
a decrease in effective channel length. Because of punch-through, we can’t turn off the transistor and the device becomes 
useless. 

d) Hot Carrier Effects: Hot carrier injection occurs in semiconductor devices when electrons and holes gain a very large amount 
of kinetic energies and they cross the potential barriers and reach the conduction or valence band in the silicon oxide. The hot 
electron effect model is somewhere is showing a similar effect as in case of power dissipated, the electron gas temperature, and 
overheating. Hot carrier injection mainly occurs in N- channel, HCI is an irreversible event in MOSFET. HCI depends on the 
internal electric field induced in the channel. 

The cross-sectional view of n-type MOSFET has been shown in the diagram to describe hot carrier generation phenomena. Some of 
these electrons have such a high amount of energy that they can cause impact ionization[1] as they reach near the drain region. 
Because of that, it can give rise to the drain to body current. It is also possible that some of these hot carriers can collect by the gate 
after tunneling through the oxide.  
 

1.2 Hot carrier generation in n-type MOSFET 

 
Above mentioned short channel effects occur in conventional MOSFET. While in FinFET, since the channel is wrapped around by 
the gate structure, it provides better SCE. It also has been observed that FinFET allows having better mobility. Because of all this, 
FinFETs give higher speed, low power consumption due to low leakage. 
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II. IMPACT OF RADIATION ON MOSFET 
Many radiation particles are present in space and other radiation environments. Particle and photon radiation are two types of 
radiation[10]. Particle radiation includes charged particles and neutral particles like electrons, ions, protons, alpha particles, and 
neutrons. On the other hand, photon radiation constitutes high energy gamma rays and x-rays. We have different units for both types 
of radiation when we are dealing with their radiation impact[9]. When we are looking at the impact of photon radiation, the unit that 
we use is rad. “A rad is the amount of photon radiation which deposits 100 ergs of energy per gram of a given material”. Insulators 
and oxides are the key components of all electronic devices from MOSFETs to bipolar ICs. When a device interacts with radiation, 
it builds up charge in the insulators like silicon oxide that can lead to device failure. In radiation environments, interaction with high 
energy photons and electrons can significantly reduce the lifetime of the system due to TID, total dose effects. Apart from TID, 
there are some transient effects, which we call Single Event Effects (SEE). TID is a long-term effect that permanently degrades the 
device while SEEs are transient. 
1) TID (Total Ionizing Dose): When MOSFET is put under some radiation, the high energy electrons (like the ones present in the 

environment or photon generated secondary electrons) and protons can cause the ionization of the atoms and hence electron-
hole pairs generated. Until these high energy particles have energy that is greater than the minimum energy required to generate 
electron-hole pairs (E ≤ hv), additional electron-hole pairs will keep on generating by them. In this way, a single particle or 
photon can generate a considerable amount of electron-hole pairs. When such high energy radiation particles interact with 
MOSFETs, as expected, the generation of electron-hole pairs takes place. This e-h pair generation in the oxide is the main 
reason that causes almost all kinds of TID effects. Charge build-up induced in the oxide can cause device failure. The 
mechanism of charge build-up and device degradation. The e-h pairs are generated by the radiation, charge carriers will be 
swept by the gate electric field. Because of the positive electric field in the oxide, the electron will move toward the gate, and 
holes will travel toward the interface. The number of e-h pairs that avoid recombination is called the charge yield.  

 
A. Traps Due to Radiation and bias Stres 
1) Oxide Traps: The number of electrons is moving from the source to drain in the inversion layer of Si substrate can be 

trapped due to the gate oxide’s defects which are located v e r y  close to the semiconductor-dielectric interface (Si− 
SiO2)[6]. The mobility of holes is less in comparison to that of electrons. Because of the applied gate electric field, the 
generated holes travel to the oxide/gate interface, if the bias is negative. If the bias is positive near the interface, Vacancies are 
present because of oxygen’s “out-diffusion” in the oxide, dangling bonds. These vacancies can work as “trapping centers” for 
holes. Some holes will be captured by traps as they travel toward the interface. The fraction of holes that are going to be trapped 
in something depends on the fabrication process. Since the effective charge trapped in the oxide is positive so it causes a 
negative shift in the threshold-voltage of NMOS as well as PMOS transistor. Electrons, trapped in the gate oxide, decrease the 
net potential drop between the positively biased gate terminal and grounded substrate, which decreases the effective gate 
voltage and subsequently decreases the drain current.  

2) Interface Traps: Radiation can also cause the formation of interface traps. These traps can be positive, negative, or neutral. 
Because of the presence of these traps at the interface, its charge can be easily changed by applying a gate bias. Traps which are 
present in band gap’s lower portion are able to donate an electron to Si and hence, called donors. Therefore, for the PMOS 
transistor, the interface traps are positively charged which causes negative shifts in threshold voltage. While the traps that are 
present in the band gap’s upper portion are able to accept an electron from Si and hence, called acceptors. Therefore NMOS 
transistor consists of negatively charge interface traps which finally cause the threshold voltage (ܐܜ܄) to shift positively. For 
interface traps at the mid gap, they are approximately neutral. Previously, we have also seen the impact of oxide traps on 
NMOS and PMOS. So, we can conclude from here that ܜܑۼ (interface traps charge) and ܜܗۼ (oxide traps charge) and are 
additive for PMOS and subtractive for NMOS. 

III. REQUIREMENTS 
To conduct the experiment, OSLO bulk FinFET is needed for radiation and stress purposes. To observe the impact of the different 
experiment on the transistor, I used wafer probe station for measurements and gamma chamber to         radiate the transistors. 
 
A. OSLO Si-Bulk FinFET 
We have two chip each having 3 Bulk Si-FinFET of scaled length equal to (dev1 = 70nm), (dev2 = 100nm) and (dev3 = 150nm), 
with the supply voltage (Vୈୈ) of 1.2V. Measuring devices have an effective width (W) of 33.6μm. 
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Table 1 Specifications of  bulk Si-FinFET  
 
B. Wafer Probe Station 
In this experiment, the Cascada wafer probing station was used to measure the impact of bias stress and radiation on DC transfer 
characteristics of transistors. Here the chip is irradiated by gamma rays to see the impact of radiation on the chip and shift in the 
transfer characteristics (Iୈ vs Vୋୗ) for which Keysight B1500A semiconductor device parameter analyzer was used. The device used 
for this is shown in the figure 3.1 

Figure 3.1 Probe station 
 
C. Gamma Chamber 
FinFET transistors were kept under gamma radiation. Gamma radiation available in the chamber had a dose rate of 2.936 
KGy/Hour. In this experiment, we tried to accumulate the radiation of 4 MRad. For that, we need to calculate the amount of time we 
should keep the transistors into the gamma chamber. 
In this experiment of gamma radiation, we have 
1) Measurements of fresh transistors. 
2) Measurements of the transistor which we first put  under stress and  then  radiation, which is R2. 
3) Measurements of the transistor which we first radiated  and then put under stress, which is R1. 
 
D. Schematic of  Procedure 

We started the experiment by taking the measurements on fresh devices of both the  chips R1 and R2. In measurements, we take the 
Iୈ vs Vୋୗ and Iୈ vs Vୢ ୱ curve for all six devices. Then, we put the transistors on chip R2 under stress. 
To put the FinFETs under stress we applied the following biases at different terminals using Cascade wafer probe station. 
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These devices transfer characteristics, (Iୈ vs Vୋୗ), are measured by applying the variable voltage at the gate terminal. Gate terminal 
voltage varied from -0.6V to 1.5V at same Vds, drain voltage. 
After that, we put both the chips under gamma radiation of 4Mrad. 1 Mrad = 10,000 Gy 
The rate of gamma radiation in the chamber was 2.936 KGy/hour. 
Time required = 4 Mrad/ 2.936 KGY/hour = 13 Hours, 37 Min 
Time required = 13 Hours, 37 mins. 
We took out the chips from gamma chamber after a calculated time and got the gamma irradiation of 4Mrad on R1 and R2. We put 
the devices under test and took the measurements using probe station. Then, we put R1 under stress to observe the impact of after 
radiation. Again we used the same bias stress as we put for R2 to get the comparative study.  
 

IV. OBSERVATION 
Si-FinFET is tested under the following conditions: 
1) Stress followed by radiation and 
2) Radiation followed by stress 
And observed on Bulk Si-FinFET of different lengths for 4MRad dose w.r.t change in the device parameters such as ΔV୲୪୧୬ , %Igon, 
shown in figure 3.1 and figure 3.2 respectively. 
 

 
 
 
 
After the experiment, out of 6 devices, two devices of gate length 70nm get shorted. For remaining devices, we observed the 
parameters of the measured device using DC transfer characteristics that include the change in gate leakage current and linear 
threshold voltage shift (ΔV୲୪୧୬). 
 

V. RESULT 
Figure 3.1 show %Vtlin respectively vs. Effective gate length = 100nm and 150nm devices for process A and B. A positive shift in 
the threshold voltage was observed. The increase in threshold voltage value, ΔVtlin, is evident of the interface traps build-up at the 
Si-SiOଶinterface. Process A shows a largely positive shift in Vtlin in comparison to the process B.  
The reason is that stress on FinFETs before radiation haa generated an extra number of defects at the interface. So, when we 
radiated the stressed device, because of the extra number of defects, it generates a relatively large number of interface traps and 
hence we got a positive shift in threshold voltage.  

FinFET device of length Applied Vds Applied Vgs Time duration 
70nm Vds = 1.2 V Vgs = 1.5 V 1600 
100nm Vds = 2.5 V Vgs = 1.5 V 3700 
150nm Vds = 2.5 V Vgs = 1.5 V 3600 

Figure 3.1 Change in V୲୪୧୬for 100 and 150 nm gate 
length for the different set of experiment 

Figure 3.2 Percentage change in Igon for 100 and 
150 nm gate length for the different set of experiment 
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Figure 3.2 shows the increase in gate leakage current because of stress and radiation. It is clear from the graph that the change in 
gate leakage current is more in the case of process A, in comparison to process B. When we first stress the device then it generates 
traps in the oxide. During irradiation, generated electron-hole pairs have the availability of traps to move. So, trapped charge build-
up in oxide regions increases transistor leakage current. But when we follow procedure B, since there is no prior stress and hence no 
availability of vacancies, gate leakage current is less. As we suggested that radiation after stress contains a large number of traps, so 
% increase in leakage current, is more in comparison to the stress after radiation. 
 

VI. CONCLUSION 
DC characteristics or transfer characteristics of Si-bulk FinFET are measured from these experimental procedures :“Radiation after 
stress” and “Stress after radiation”. In process A, we found that gate leakage current will be larger in comparison to  process B 
because of oxide traps generated by stress before radiation.  
For effective length 100nm, the change in V୲୪୧୬ is 71.125 mV for process A and 15.843 mV for experimental setup B. For effective 
length 150nm, change in V୲୪୧୬ is 58.366 for process A and 15.788 for experimental setup B. Process A shows considerably large 
degradation in V୲୪୧୬ in comparison to B. 
We found that bias-stress or continuous usage of devices make Bulk FinFETs more  vulnerable to get impacted by radiation. 
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