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Abstract: The data is the most valuable thing in this modern world of Information Technology. As we can see the day to day the 
data is increasing as each and every people using the World Wide Web. This all system generated data or may be the personal or 
informative data will get generated in a huge amount of size. That data will get stored at the data centers or on cloud. But those 
will get stored on the Hard Disk Drives in data centers. So in some situation if the HDD got crashed then we will have lost our 
data. This work proposes to develop the failure prediction of Hard disk drive. We have chosen the accuracy and review 
measurements, generally important to the issue, and tried a few learning strategies, Adaboost, Naive Bayes, Logistic Regression 
and Voting. Our investigation shows that while we can't accomplish close to 100% forecast precision utilizing ML with the 
present information we have accessible for HDDs, we can improve our expectation exactness over the standard methodology 
Keywords: Machine learning, Adaboost, Naive Bayes, Voting, Logistic Regression 
 

I. INTRODUCTION 
IT sector has become the major driving factor of today’s world economy. Any business or work by any company may be it tech or 
non tech i.e. technical company that build software’s or non tech companies that focus on non tech products like food, clothing etc. 
they all need computers i.e. they all need the IT department. No business, organization can work without computers in 21th century. 
Computers have affected us so much that even are quotidian life cannot function without it. It has become our day-to-day necessity. 
Humans cannot imagine life without computers. "Computing is not only computing anymore it’s about human living". (Nicholas 
Negroponte, Being Digital, 1995, p.78) This Computer basically consist of two components i.e. software and hardware. 
Hard drive is component where all the information is stored. Big organization performs a great amount of work using computers. 
Hence, a huge chunk of info in form of data are stored on these Hard Disk. These Hard-drives have a good history of 
malfunctioning. So what if these hard drives are damaged somehow and stop working suddenly, the important/critical data stored 
will be completely gone. There is almost 1 Exabyte of data stored on cloud according to the result of research done by Nasuni (A 
survey of security and privacy challenges in cloud computing: solutions and future directions, 2015). 
One of the major threat considered in cloud computing is data loss and data breaches.  (Jing Li, 2014). According to a recent survey 
conducted, 63% of customers will not purchase a cloud service if it has some history of sensitive data loss or data breached. " (Jing 
Li, 2014). 78% of hardware substitution has been recorded for hard drives by Microsoft in a study done by (Nicolas Aussel, 2017) 

II. METHODOLOGY 
The predefined Hard Drives features of dataset is available. Among that data set system will select the parameters for the detection 
of the HDD failures. We are using the data set that will load and it will go into the pre-processing stage. After that we are using the 
multiple algorithms to detect the failure of HDD. Result of this will be captured and based on that system will measure the 
accuracy. Intension behind the applying the multiple algorithms is to get the more accurate result.  
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A. Pre-processing Data 
Raw data collected are susceptible to missing values, noisy data, incomplete data, inconsistent data and outlier data. So, it is 
important for these data to be processed. In pre-processing the collected dataset is divided into two parts, one for testing and other 
for training purpose. The dataset is labelled. The pre-processing stage involves feature extraction and scaling, feature selection, 
dimensionality reduction and sampling. Pre-processing helps in cleaning data to be made fit for further processing.    
Steps involved in pre-processing 
1) Feature extraction  
2) Feature selection 
3) Dimensionality reduction 
4) Sampling 
 
B. Model Building 
In this step a model can be built using different machine learning techniques. We also use Ensemble Classifiers in the process to 
predict hard drive failure. Ensemble Classifier is a classifier formed by combining two or more different classifiers. This newly 
created model or more precisely the hybrid model can be far more efficient than each one them to be used alone. In this hybrid 
model different learning and methods are used to produce N-different models using a single dataset. In a nutshell, the system than 
combines the output of all these models to get the most efficient output. The output obtained is a weighted average of all inputs for 
each model.  

 
 

III. EXPERIMENTATION 
The Combination of Algorithm used by us are: 
 
A. ADABOOST 
One of the most widely used and studied the ADABoost algorithm by Freund and Schapire was the first practical boosting algorithm 
with a large number of application in numerous fields. (Robert E. Schapire). AdaBoost is a well-known boosting strategy that 
encourages you join numerous "feeble classifiers" into a solitary "solid classifier". A powerless classifier is essentially a classifier 
that performs inadequately yet performs superior to arbitrary speculating. AdaBoost can be utilized to any description calculation, so 
it's a technique that grows over different classifiers as a substitute of being a classifier itself.  
We can prepare a lot of frail classifiers all alone and consolidate the outcomes. It helps you pick the preparation ready for each new 
classifier that you train reliant on the aftereffects of the past classifier. It chooses how much weight ought to be submitted to every 
classifier's proposed reply when joining the outcomes.  
Each powerless classifier ought to be able on an arbitrary subset of the absolute preparing set. The subsets can include it's not 
comparable to, for instance, dividing the preparation set into ten bits. AdaBoost allocates a "weight" to each preparation model, 
which takes the likelihood that each model should to show up in the preparation set. Models with greater loads are bound to be 
remembered for the preparation set, and the other way around. Subsequent to preparing a classifier, AdaBoost constructs the weight 
on the misclassified models with the aim that these models will make up a larger piece of the next classifiers' preparation set, and 
preferably, the following classifier prepared will do better on them.  
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After each single classifier is prepared, the classifier's weight is decided dependent on its accuracy. Gradually precise classifiers are 
given extra weight. A classifier along with half exactness is offered a load of zero, and a classifier with under half precision (sort of 
an amusing idea) is given a negative weight. 
We should look at the situation for the last classifier.  

(ݔ)ܪ = ݊݃݅ݏ ൭෍ߙ௧ℎ௧(ݔ)
்
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(݅)௧ାଵܦ =
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The attribute D_t is a vector of loads, with one capacity for each preparation model in the preparation set. 'I' is the training model 
number. This situation tells you the finest way to restore the weight for the it is preparing model. 
 
B. XGBOOST 
XGBoost is a choice tree-based group Machine Learning calculation that uses an angle boosting structure. In expectation issues 
including unstructured information (pictures, content, and so on.) counterfeit neural systems will in general beat every other 
calculation or structures. In any case, with regards to little to-medium organized/forbidden information, choice tree-based 
calculations are viewed as top tier at this moment. XGBoost calculation was created as an exploration venture at the University of 
Washington. Tianqi Chen and Carlos Guestrin exhibited their paper at SIGKDD Conference in 2016 and discovered the ML world 
by fire. XGBoost and Gradient Boosting Machines (GBMs) are both group tree techniques that apply the standard of boosting 
powerless students (CARTs for the most part) utilizing the angle drop design. Be that as it may, XGBoost enhances the base GBM 
structure through frameworks streamlining and algorithmic improvements. 

 
 
C. Voting 
Voting is definitely the most straightforward method for consolidating expectations from numerous AI calculations. The democratic 
classifier isn't a genuine classifier yet a wrapper for a lot of various ones that are prepared and assessed in parallel so as to abuse the 
various quirks of every calculation. 

 
 
We can train data set using different algorithms and ensemble then to predict the final output. The final output on a prediction is 
done by majority in voting according to two strategies: hard voting and soft voting. 
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D. SVM 
SVM is a classification approach for supervised learning. The goal of the SVM is to classify or separate the given data on basis of 
some feature selection using a hyperplane. For differentiating between two types of data point, the hyper plane can be a straight line, 
with both types of data point on either side of it. The structure of this hyperplane can be changed on the basis of different types of 
data points given. It’s basically a type of classification algorithm which draws a line between different types of data given to classify 
and identify the given data. If the number of input data points or features is 2, then a line is used as a hyperplane for classification. If 
the number of input data points is 3, then the hyperplane transforms from a line to two dimensional plane. 
 
E. Naïve Bayes 
Naive Bayes is a statistical classification technique based on Bayes Theorem. It is one of the most simplified supervised learning 
algorithm. It is also one of the most accurate reliable and fast algorithm. It performs best when applied to large datasets in terms of 
accuracy and speed. 
Naive Bayes classifier assumes that each and every feature’s result is independent of every other feature in a particular class. It 
doesn’t matter whether the features are dependent and independent, these features are considered independently. This assumption 
simplifies computation, and that's why it is considered as naive.  
We have discussed all the algorithms used by us in creating our system. We have also discussed the drawbacks of previous papers. 
We have seen how much the strength of dataset can have an impact on having a high accuracy. 
By keeping all these things in mind we will discuss the implementation of the combination of algorithms discussed by us here, in the 
next session. 

 
IV. RESULTS AND DISCUSSION 

Logistic Regression: Accuracy:  57.86771368166717 

 
Confusion Matrix(Logistic Regression) 

 
As per the above fig there are 1181 cases that are been predicted correctly with its respective class (0) and 455 cases are predicted 
wrongly as class(1) of respective class(0).  Our classifier has predicted 940 cases incorrect as class(0) of respective class(1) and 735 
cases correctly as class(1). 

 
AUC score : 0.58 
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Logistic Regression: Classification report 
precision recall f1-score    support  
Yes 0.56 0.72       0.63       1636 
No 0.62       0.44       0.51       1675 

 
accuracy   0.58       3311 
macroavg 0.59       0.58       0.57       3311 
weightedavg  0.59       0.58       0.57       3311 

 

 
Figure 11: Classification report(Logistic Regression) 

 
Report shows precision, recall and f1-score for the two resultant classes. For Class(0) they are 0.618, 0.439 and 0.513 and 0.557, 
0.722, 0.629 for Class(1) respectively.   
 
Naive Bayes: Accuracy:  57.95832074901842 
Naive Bayes: Confusion Matrix 

 
Figure 12: Confusion Matrix(Naive Bayes) 

 
As per the above there are 1147 cases that are been predicted correctly with its respective class (0) and 489 cases are predicted 
wrongly as class(1) of respective class(0).  Our classifier has predicted 903 cases incorrect as class(0) of respective class(1) and 772 
cases correctly as class(1). 
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Figure 13: ROC-Curve(Naive Bayes) 

AUC score : 0.58 
Naïve Bayes: Classification report 
 

 precision recall   f1-
score    

support 

Yes 0.56 0.70       0.62       1636 

No           0.61 0.46       0.53       1675 

 
accuracy   0.58       3311 
Macro 
avg 

0.59       0.58       0.57 3311 

 

 
Figure 14: Classification Report(Naive Bayes) 

 
Report shows precision, recall and f1-score for the two resultant classes. For Class(0) they are 0.612, 0.461 and 0.526 and 0.560, 
0.701,  0.622 for Class(1) respectively.   
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Ada Boost: Accuracy:  98.30866807610994 
Ada Boost: Confusion Matrix 

 
Confusion Matrix(Adaboost) 

 
As per figure 15 there are 1598 cases that are been predicted correctly with its respective class (0) and 38 cases are predicted 
wrongly as class(1) of respective class(0).  Our classifier has predicted 18 cases incorrect as class(0) of respective class(1) and 1657 
cases correctly as class(1). 

 
ROC-Curve(Adaboost) 
AUC score : 1.00 
ADABoost Classification Report  

 precision     recall   f1-score    support 
Yes 0.99 0.98       0.98         1636 
No 0.98          0.99       0.98         1675 

 
 accuracy   0.98       3311 
Macro avg 0.98       0.98       0.98       3311 
Weighted avg   0.98       0.98       0.98       3311 
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Figure 17: Classification report(ADABoost) 

 
Report shows precision, recall and f1-score for the two resultant classes. For Class(0) they are 0.978, 0.989 and 0.983 and 0.989, 
0.977, 0.983 for Class(1) respectively.   

V. CONCLUSIONS 
In this project, we have chosen the accuracy and review measurements, generally important to the issue, and tried a few learning 
strategies, Adaboost, Naive Bayes, Logistic Regression and Voting. Our investigation shows that while we can't accomplish close to 
100% forecast precision utilizing ML with the present information we have accessible for HDDs, we can improve our expectation 
exactness over the standard methodology. ML calculations are equipped for giving progressively exact expectations of HDD 
disappointments, with promptly accessible information, then what is right now executed in the present business. From the 
Implementation we concluded that the Voting ensemble hybrid algorithm gives the best result as compared to the other algorithms. 
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