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Using First Order Shear Deformation Theory 
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Abstract: Composites are used comprehensively in constructional company. Instead of conventional materials engineers are 
experimenting new materials every day in which composites are providing solution to many structural applications. MATLAB 
software is used in the investigation of static performance of laminated plates. Designing of composite laminate is very complex 
and requires lot of computational effort. It is very difficult to solve composite numerical problems manually. Developing 
MATLAB code for the analysis of laminated composite plate using finite element analysis. To determine the deflection and 
transverse shear stress of square laminated plate which is simply supported and subjected to uniform pressure. To explore the 
influence of modular ratio on deflection and transverse shear stress for different materials. Development of MATLAB code for 
the interpretation of first order shear deformation theory. 
Keywords: Laminated plate, composites, MATLAB, shear deformation theories, Finite element analysis  

I. INTRODUCTION 
Composites are combination of two or more materials that are merged together to give distinct combination of properties. These 
materials have different physical, chemical properties and are insoluble. So obtained materials have high strength and high specific 
modulus. They are much lighter in weight as compared to conventional materials.  
In history we have seen use of composite in form of mud walls, houses, boats, bamboo laminated boards, etc. Egyptian civilization 
in 1600 B.C. used straw and mud for house settlements. Fibrous plants, bone, wood etc., were used as binders in those times. Then 
there was origin of synthetic fibers like polyesters, vinyl etc. which were sturdier than those acquired from animals and plants. In 
1900’s we have seen much advancement in composites with introduction of carbon, glass fibers. These materials have higher 
modulus of elasticity and had very high strength. They were used in making aircrafts, jets, aeronautical equipment and gears., etc. 
Government of India had launched project Advance Composite Mission for developing motivation for the use of composite 
materials for building and construction. 
The constituents in composites are of two types. One is reinforcing phase and other is matrix. The reinforcement is predominantly 
type of fibers which are poor in compression but good in tension. The fibers can be of type fiber- short or long (carbon, aramid, 
boron, glass, etc.) or yarn or fibrous composites (cotton, jute, sisal, hemp, coir’s etc.) These fibers are entranced or held over in 
materials called matrix. Matrix is mainly continuous. Matrix can be polymers (epoxides, polyester, nylon) or ceramics (Sic, glass 
ceramics etc.) or metal (magnesium alloys, aluminum alloys, titanium etc.) Matrix is kind of binder which joints fibers. 

 

A. Classification Of Various Plate Theories 

To examine the static and dynamic performance of plates we have various plate theories present. But taking into considerations the 
geometrical properties and plate material, we must get familiar with different theories present as same theories cannot be applied to 
every condition. 

1) Thin plate 
a) Classical plate theory and Kirchhoff’s plate theory can be used for thin plates. 
b) It is valid when length to thickness ratio is greater than 20 (a/h=s>20). 
c) It is two-dimensional theory. 
d) This theory is based on plane stress assumption. 
e) This theory can be applied for both isotropic and anisotropic (for small and large deformation). 
f) The assumptions taken is that there is no elongation through thickness and there is no rotation of planes. 
g) This theory is just accurate. 
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2) Moderately Thick Plate: Few shear deformation theories are accessible for analysis of moderately thick plates. When aspect 
ratio i.e., the width thickness ratio is greater than 6 and less than 20 (a/h=s,20<s>6) this theory is valid. First order shear 
deformation theory (FSDT) and higher order shear deformation theory (HSDT) are used for moderately thick plates. Both these 
theories can be applied to isotropic and anisotropic materials. FSDT requires correction factor and therefore gives slightly less 
accurate results. Early’s 70 FSDT theories were used for analysis but now at present we are introduced with materials like 
composite laminates, functionally graded materials, piezometric or advance ceramic therefore much refined theories are 
required. HSDT doesn’t require shear correction factors and gives much accurate results. These theories are two-dimensional 
theories. They can resist shear and transverse deformation. They are much accurate than the theories suitable for thin plates. 

3) Thick Plates: Theories of elasticity are used for thick plates. These are three- dimensional theories and are more accurate than 
other theories. If the material is isotropic then FSTD or HSDT can anticipate marginally accurate behavior but if the material is 
anisotropic then ESL theories cannot be much accurate. As for the anisotropic number of layers have different properties so the 
displacement value will also be different and therefore number of variables will increase. This increases the computation 
efforts. Layer wise plate theory are much refined theories. 

4) Classical Laminated Plate Theory: CLPT is the simplest of all the theories present for analysis of thin plates. It is an expansion 
of Kirchhoff ‘s plate theory. CLPT is appropriate for analysis of thin plate. Plane stress assumptions are taken in classical 
laminate plate theory and deformation due to shear is neglected. The results obtained from CLPT are adequate and just 
accurate. Since this theory does not deal with shear deformation, the value of buckling load is more than actual and similarly 
deflection is lesser than actual. For different modes this theory cannot predict accurate behavior of sandwich plates. 

The displacement field of CLPT is given in form of: 
  푢(푥,푦, 푧) = 푢 (푥, 푦)− 푧                                                                                                                                                                           (1)                                                                                   

푣(푥,푦, 푧) = 푣 (푥,푦)− 푧                                                                                                                                                                              (2)                                                                                     

푤(푥,푦, 푧) = 푤 (푤, 푦)                                                                                                                                                                                          (3)                                                                                               
푢 = displacement component along x direction 
푣 = displacement component along y direction 
푤 = displacement component along z direction 

5) First Order Shear Deformation Theory: FSDT is relevant to thin and moderately thick plates. Unlike classical lamination plate 
theory, it considers shear deformation. It is an extension of Mindlin –Reissner theory. FSDT cannot predict the interlaminar 
stresses therefore a shear correction factor is used. It is much simpler to use and could be solve in various commercial software. 
It gives more accurate result than classical lamination plate theory. 

The displacement field is given as: 
u(x, y, z) = u (x, y) + zθ (x, y)                                                                                                                                                                        (4)                                                                                     
v(x, y, z) = v (x, y) + zθ (x, y)                                                                                                                                                                        (5)                                                      
w(x, y, z) = w (x, y)                                                                                                                                                                                            (6)                                                                                                               

6) Higher Shear Deformation Theory: It is suitable for applying to thick plates. The impact of deformation due to normal 
transverse and transverse shear is taken into consideration. Shear correction requirement is not there in this theory. It gives 
much accurate results. They represent kinematics in a decent way, but computational effort is more therefore it is used 
whenever required. 

The displacement field is given as: 
u(w, y, z) = u − z ( , ) +φ(z)φ (x, y)                                                                                                                                                  (7)                                                                      

v(x, y, z) =  v − z ( , ) + φ(z)φ(x, y)                                                                                                                                                      (8)                                                                   

w(x, y, z) =  w (x, y)                                                                                                                                                                                           (9)                                                                                                                  
7) Refined Plate Theory: Zig zag plate theory and higher order zig zag theory were much accurate than other shear deformation 

theories. These theories can examine interlaminar stresses. Since number of layers increments, number of unknowns likewise 
increments. This increases the computational cost. If the material is isotropic then theories like CLPT, FSDT, HSDT can predict 
the behavior of plate almost accurately. But if the materials are anisotropic then single equivalent theory could not determine 
finer results, for such cases refined plate theories proves to be valuable. In this a MATLAB program is developed for the finite 
element analysis of laminated plates using First Order Shear Deformation Theory.[1] 
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II. LITERATURE REVIEW AND INFERENCES 
Srinivas et al. (1970) developed exact analysis of three-dimensional theory of elasticity for bending, static and free vibration of 
rectangular laminated composite plates. Taking different modular ratios, deflection and stresses for thin plate for simply supported 
boundary condition has been found and error had been presented. For static and dynamic conditions results are been validated with 
Reissner’s theory and thin plate theory. Similarly, for buckling analysis , the results are being compared with Mindlin’s theory.[2]S. 
Srinivas (1973) had previously postulated exact analysis and studied the behavior of laminated plate under bending and buckling. In 
this paper he simplified the previous theory of exact analysis and reduced the three dimensional to two-dimensional theory. He 
carried out the analysis with same boundary conditions, modular ratios and thickness and found that it had good agreement with 
solutions obtained from exact analysis of three-dimensional theory of elasticity. This refined theory could be applicable for 
anisotropic plates and could be used for common support conditions.[3] J. N. Reddy et al. (1985) presented analysis of laminated 
plates using higher shear deformation theory of simply supported plates. The results were matched with FSDT and CLPT. There 
was no requisite to use shear correction factors and the results attained were nearer to those attained from three dimensional exact 
solutions. Natural frequencies and buckling loads were calculated for few numerical examples using HSDT. They examined the 
stability of isotropic and orthotropic plates.[4] B. N. Pandya et al. (1987) composed a displacement model expressed from higher 
order shear deformation theory and analyzed thick laminated plate for bending. This theory unlike FSDT did not use shear 
correction factor. Few examples with different material and conditions were taken. Deflection of the plate and interlaminar stresses 
were calculated by developing a computer program. The results obtained were compared with three- dimensional model closed form 
solutions. The response was precise with former theory.[5] J. N. Reddy et al. (1991) evaluated progress of different types of finite 
element model in field of finite element analysis of laminated plates. In this paper two such finite where models were taken and was 
observed that they provide with better accuracy. It was much refined theory which could possibly be used for coding in commercial 
finite element software.[6] P. C. Dumir et al. (2001) presented a paper on evaluation of transverse shear deformation of laminated 
plate using orthogonal point collocation method and assessed with first order shear deformation theory and classical plate theory of 
laminates. The response of the plate for both simply supported and clamped conditions were considered by changing the modular 
ratios. The consequences of using CLPT and FSDT was investigated.[7] A. J. M. Ferreira et al. (2005) had evaluated free vibration 
of symmetrical laminated plates. They used displacement model of first order shear deformation theory and for transverse stress, 
eigen value he used multiquadric radial basis function. He showed that convergence of transverse deflection, natural frequency was 
very reasonable. This method could be used as substitute of other finite element models.[8] Jun-Sik Kim et al. (2006) formulated an 
augmented version of first order shear deformation theory. This theory was used to analyze the static performance of laminated and 
sandwich plates. Transverse deflection and stresses were calculated and validated with his previous research papers. The enhanced 
FSDT was also compared to three dimensional exact solutions. The proficiency of this theory was confirmed by showing of few 
examples and compared with higher shear deformation theories. It was seen that it gave outstanding results. [9] Oh et al. (2008) 
presented an enhanced FSDT theory which used the displacement field of (HOZT) higher zig zag theory thereby developed 
enhanced first order shear deformation theory. So developed theory can be used to any commercial software without cogent 
modifications as such. He used ANSYS to compare numerical results and measure up with FSDT and HOZT. Several stacking 
sequences were studied for plates and simple sandwich plates. The finite model gave close and proximate results for HOZT and 
EFSDT but were in less agreement with FSDT. [10] Y. X. Zhang et al. (2008) studied various research papers based on analysis of 
laminated plates using finite element model. The paper was ardent to lately developed finite model for analysis of laminated plates. 
Effect of bending, buckling, static and free vibration was reviewed in this paper. The development in shear deformation theories 
with the advance in finite element model and how these models helping in reducing computational efforts.[11] Bhar et al. (2010) 
conducted a comparative study of laminated plates using first order shear deformation theory and higher order shear deformation 
theory. Different shear deformation model was taken with different boundary conditions. Plates stiffener dimensions were changed, 
and it hence was seen that by changing rather increasing the thickness of plates FSTD could not hold the same result for transverse 
stresses. It was indicated that for better and accurate result, whenever there is variation of thickness , how HSDT is significant than 
FSDT.[12] SS Aliedin et al. (2011) proposed three alteration method for the analysis of laminated plates and functionally graded 
plate. They used first order shear deformation theory model and reformed the theory to develop mode for elastostatic analysis. 
Comparisons were done with multilayer composite plates and their counterpart functionally graded plate. Many methodologies were 
given to convert composite plate into comparable functionally graded plate.[13] Lx Peng et al. (2011) had analyzed flexure behavior 
of laminated composite plate using FSDT. In this paper no mesh was required to obtain stiffness equation of laminated plates. The 
stiffness equation was modified, and the proposed theory resulted in much adjustable value than finite element model.  
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He presented his theory by comparing with few numerical examples and found results harmonious with examples.[14] M. Shahbazi 
et al. (2012) sourced two problems of static analysis of laminated plates solved using mesh free method. They found few 
inconsistencies in the response of bending when width to height ratio was changed. They presented a cohesive method of boundary 
conditions which helped in getting over such divergence in results. They also offered few examples of angle ply and cross ply 
laminate analysis by the proposed theory.[15] Huu Tai- Thai et al. (2013) composed first order shear deformation theory with only 
four unknowns. He analyzed laminated plates using modified theory for free vibration and bending analyses. They analytically solve 
the governing equation of Hamilton and modified to a simpler version of FSDT which had only four unknowns. They verified the 
results with few numerical models, and it was seen that less computational effort was needed for solving laminates.[16] CMC Roque 
(2013) developed MATLAB coding using symbolic math toolbox for analysis of flexure of laminated plates. He used radial basis 
functions using third order shear deformation theory. A MATLAB program was developed. He demonstrated how such coding can 
be helpful for other shear deformation theory by simply writing the governing equations and equilibrium equations in terms of 
engineering constants.[17] J. L. Mantari et al. (2015) modified the conventional first order shear deformation theory by adding few 
indeterminate terms and reducing the number of unknowns in the equilibrium conditions. This reduces the number of unknown 
equations from five to four which makes this theory less demanding for calculations. This theory was verified by Navier’s solution. 
The studies showed that results were in good agreement with each other.[18] Tiantang Yu et al. (2015) presented iso geometrical 
analysis of buckling and vibration of laminate plates. Several cut outs were made by level set method and then analysis was done to 
find in plane stress using FSDT displacement model. The solution from IGA analysis for various lay outs and different fiber 
orientation.[19] J. Eisentrager et al. (2015) presented the paper on application of first order shear deformation theory on laminated 
plate and photovoltaic panel. This paper examined how FSDT could be applied to symmetric laminate plate with unsymmetrical 
photovoltaic panels having anisotropic properties. Transverse shear stresses and deflection were calculated with finite element 
model and were matched with closed form solution.[20] J Belinha et al. (2016) used different meshless method combined with first 
order shear deformation theory for analysis of composite laminated plates. The results were compared with exact solutions. Coding 
for analysis of laminates was developed in MATLAB. These methods were compared with published literature and the values were 
adjacent to those obtained from program.[21] Marjanovic et al. (2016) formulated multilayer finite plate element rectangular in 
shape from the postulate of Reddy’s higher shear deformation theory. The HSDT model was reduced to FSDT model. The model 
was carried out in MATLAB code and was further verified from Abaqus commercial software. The HSDT model and FSDT model 
were corelated and was seen that HSDT exhibit finer results.[22] Osama Mohammed El mardi (2016) presented that when dynamic 
relaxation method was used with finite difference method, the response of bending in rectangular plates were compatible with 
published analytical and numerical methods. He used Fortran language for analysis of moderately thick plates finding the deflection. 
He changed the layup configuration, boundary condition, mess sizes, and observed the convergence of the results. He concluded that 
factor like load application and layup configuration affects the deflection of the plates. The dynamic relaxation program was based 
on first order shear deformation theory.[23] Hossein Zamanifar et al. (2018) developed a MATLAB program for analysis of static, 
free, and forced vibration of corrugated core sandwich plate using FSDT. He validated his results from printed literature trying 
several boundary conditions, mechanical and geometrical properties. [24] Dongyan Shi et al. (2018) used simple first shear order 
shear deformation theory (SFSDT) to analyze free vibration of plates of different shapes like that of trapezoidal, rectangular or skew 
plates. This shortened theory was much easier than first order shear deformation theory. Mainly simply supported laminated plates 
were studies for laminate behavior.[25] 

III. PLATE THEORIES 
For many engineering uses and functions plates are widely used around the world. They are valuable in making decks, bridges, 
giving footings in foundation, etc. Thickness of the plates plays an important role as behavior of plate is largely affected by lateral 
loads which bring about bending in plates. Therefore, flexure analysis is important when we study laminates behavior. 

A. Classical Laminated Plate Theory 
CLPT therory is adjunct to classical plate theory. It is derived and based on Kirchoffs theory of plate which is further extension of 
Euler Bernoulli beam theory. It is suitable for applying to thin plates. It neither contemplate normal deformation nor transverse 
shear.  
The assumption taken in  hypothesis of Kirchoffs states that  
1) After deformation, straight line normal to mid surface remains straight. 
2) The transverse normal does not undergo any enlongation. 
3) After deformation, thickness of the plate remains the same ie the tranverse shear strain is zero. 
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4) Plane stress assumptions are used. 
Classical laminated plate theory gives satisfactory and moderate results for thin laminates. This theory overlooks shear deformation 
effects. This theory undervalue deflection and overvalue buckling load. 
Assumptions made in classical lamination plate theory is equivalent to those made by Naiver and Bernoulli theory for thin plates. 
Therefore, solution given by Navier for simply supported rectangular plate is described below. Defection of the plate was given by 
means of double infinite series in expression of trigonometric series.                                                                                                                              

w(x, y) =  A  f (x)g (y)                                                                                                                                                              (10) 

 
After applying boundary conditions for simply supported edges, the deflection could be written as 

푤 =  퐴  sin훼 푥 sin훽 푦                                                                                                                                                              (11) 

Where α = , β =  , and A  is constant 
For defining the load, we have used double Fourier series  

푞(푥, 푦) = 푞  sin훼 푥 sin훽 푦                                                                                                                                                     (12) 

Coefficient of the series is given as: 

푞 =
4
푎푏  푞(푥, 푦) sin훼 푥 sin훽 푦 푑푥 푑푦                                                                                                                                         (13) 

Thus, the deflection attained is  

푤 =
푎
퐷휋   

푞

(푚 + 푛 푎
푏 )

 sin훼 푥 sin훽 푦                                                                                                                                  (14) 

For uniformly distributed load, deflection can be written as 

푞 = 푤 =
16푞푎
퐷휋  

,

sin훼 푥 sin훽 푦

푚푛 푚 + 푛 푎
푏

,

                                                                                                                                   (15) 

푤 =
16푞푎
휋 퐷  

,

sin푚휋2 sin푛휋2
푚푛 (푚 + 푛 )

,

                                                                                                                                               (16) 

When only first and second terms are taken, the summation of the series is obtained as 

푤 = 0.00416
푞푎
퐷                                                                                                                                                                                        (17) 

After the convergence of the series maximum deflection resulted as 

푤 = 0.00406                                                                                                                                                                                          (18)                         

B. First Order Shear Deformation Theory 
FSDT is based on Mindlin – Reissner theory of plates which is an adjunct of Kirchhoff’s theory of plate. It is suitable for applying 
to moderately thick plates. On top and bottom surface of the plates this theory contravenes the equilibrium equations, therefore a 
shear correction factor is used. The variation between actual stress and assumed constant stress is balanced by this shear correction 
factor. Apparently FSDT seemed uncomplicated and effective for analyzing structural problems. 
 Indeed, FSDT can be used for moderate approach to response of laminates whereas commercial codes based on finite element 
analysis necessitate requirement of input parameters of shear correction factors. FSDT can evaluate value of in-plane and out of 
plane stresses and once it is predicted the zone of maximum stresses, zig zag theories can be used for further failure and 
delamination. Boundary and loading conditions and geometric properties affect shear correction factor. 
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The displacement field is given as 
푢(푥,푦, 푧) = 푧Ψ (푥,푦)                                                                                                                                                                                       (19) 
푣(푥, 푦, 푧) = 푧Ψ (푥,푦)                                                                                                                                                                                       (20) 
휔(푥,푦, 푧) = 휔 (푥,푦)                                                                                                                                                                                        (21) 

Where 휓  = rotation of element about x axis 
           휓 = rotation of element about y axis 
           휔 = displacement in z direction 
Strains are given as: 

∈ = 푧
휕Ψ
휕푥                                                                                                                                                                                                           (22)  

∈= 푧
휕Ψ
휕푦  ,∈= 0                                                                                                                                                                                                (23) 

훾 =
휕Ψ
휕푦 +

휕Ψ
휕푥 푧                                                                                                                                                                                      (24) 

 훾 = Ψ +
∂휔
휕푦                                                                                                                                                                                                 (25) 

 훾 = Ψ +
휕휔
휕푥                                                                                                                                                                                                 (26) 

In classical plate theory the deformation due to bending, i.e., transverse shear stress is zero but in FSDT transverse shear stress is not 
zero. 

Ψ = − ,   Ψ = −                                                                                                                                                                                (27) 

Using the expression of displacement, the governing differential equation of first order shear deformation theory is given by 

휕 휓
휕푥 +

1− 휐
2

휕 Ψ
휕푦 +

1 + 휐
2

휕 Ψ
휕푥휕푦 −

6(1− 휐)푘
ℎ Ψ +

휕휔
휕푥 = 0                                                                                             (28) 

휕 Ψ
휕푦 +

1− 휐
2

휕 Ψ
휕푥 +

1 + 휐
2

휕 Ψ
휕푥휕푦 −

6(1 − 휐)푘
ℎ Ψ +

휕휔
휕푦 = 0                                                                                            (29) 

퐺ℎ푘 ∇ 휔 +
휕Ψ
휕푥 +

휕Ψ
휕푦 + 푞 = 0                                                                                                                                                    (30) 

∇ =
휕
휕푥 +

휕
휕푦                                                                                                                                                                                             (31) 

For obtaining transverse deflection of a plate, which is simply supported, the load is articulated as  

푞(푥, 푦) = 푞
,

 
,

sin훼 푥 sin훽 푦                                                                                                                                                (32) 

After applying boundary conditions  

휔 =  
,

퐴 sin훼 푥 sin훽 푦
,

                                                                                                                                                        (33) 

Ψ =  
,

퐵
,

cos훼 푥 sin훽 푦                                                                                                                                                       (34) 

Ψ =  
,

퐶
,

sin훼 푥 cos훽 푦                                                                                                                                                       (35) 
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The deflection is given as  

휔 =  
,

1 + 퐷
푘 퐺ℎ (훼 + 훽 )

퐷(훼 + 훽 )
,

푞 sin훼 푥 sin훽 푦                                                                                                              (36) 

IV. FINITE ELEMENT ANALYSIS OF LAMINATED PLATES 

Displacement field is given by: 

푢(푥,푦, 푧) = 푢 (푥, 푦) + 푧휃 (푥, 푦)                                                                                                                                                                   (37)                                                                              
푣(푥,푦, 푧) = 푣 (푥,푦) + 푧휃 (푥, 푦)                                                                                                                                                                  (38) 

푤(푥, 푦, 푧) = 푤 (푥, 푦)                                                                                                                                                                                       (39) 

Strains are derived from displacement 

⎩
⎪
⎨

⎪
⎧
휖
휖
훾
훾
훾 ⎭

⎪
⎬

⎪
⎫

=

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

휕푢
휕푥
휕푣
휕푦

휕푢
휕푦 +

휕푣
휕푥

휕푢
휕푧 +

휕푤
휕푥

휕푣
휕푧 +

휕푤
휕푦⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

                                                                                                                                                                                      (40) 

 

Constituents of deformation are termed as 

휖
휖
휖

=

⎩
⎪⎪
⎨

⎪⎪
⎧

휕푢
휕푥
휕푣
휕푦

휕푢
휕푦 +

휕푣
휕푥 ⎭

⎪⎪
⎬

⎪⎪
⎫

;    
휖
휖
훾

=

⎩
⎪⎪
⎨

⎪⎪
⎧

휕휃
휕푥
휕휃
휕푦

휕휃
휕푦 +

휕휃
휕푥 ⎭

⎪⎪
⎬

⎪⎪
⎫

                                                                                                                                 (41) 

 

훾
훾 =

⎩
⎨

⎧
휕푤
휕푥 + 휃
휕푤
휕푦 + 휃 ⎭

⎬

⎫
                                                                                                                                                                                       (42) 

Matrices of strain displacement are 

A. Membrane Segment 
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⎥
⎥
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⎥
⎥
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⎥
⎥
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                                                                                                                                                                                   (43) 
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B. Bending Segment  

퐵
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C. Shear Segment 

퐵

⎣
⎢
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⎦
⎥
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Stresses- strain relations: 

휎 =
휎
휎
휏

=

⎣
⎢
⎢
⎢
⎡

퐸
1− 휐 휐

퐸
1 − 휐 0

휐
퐸

1 − 휐
퐸

1 − 휐 0
0 0 퐺⎦

⎥
⎥
⎥
⎤
 
휖
휖
훾

= 퐷휖                                                                                                                                  (46) 

Γ =
휏
휏 = 퐾 퐺 0

0 퐾 퐺
훾
훾 = 퐷 훾                                                                                                                                                    (47)  

The stiffness matrix is a summation of five components: 

퐾 = 퐾 +퐾 +퐾 +퐾 +퐾                                                                                                                                                           (48) 

where, 

퐾 = 퐵 퐷 퐵 (푧 − 푧 )푑퐴                                                                                                                                                          (49) 

퐾 = 퐵 퐷 퐵
1
2

(푧 − 푧 )푑퐴                                                                                                                                                      (50) 

퐾 = 퐵 퐷 퐵
1
2

(푧 − 푧 )푑퐴                                                                                                                                                      (51) 

퐾 = 퐵 퐷 퐵
1
3

(푧 − 푧 )푑퐴                                                                                                                                                      (52) 

퐾 = 퐵 퐷 퐵 (푧 − 푧 )푑퐴                                                                                                                                                           (53) 

퐾 = segment stiffness 
퐾 =  segment bending coupling stiffness 
퐾 = segment bending coupling stiffness 
퐾 = segment stiffness 
퐾 = segment stiffness 
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V. RESULTS AND DISSCUSSIONS 
In this research we have taken material properties of four different composite plates. 
The shape of the plate is square and is simply supported. The thickness of the plate is 0.01m. To reduce the stiffness matrix of 
orthotropic material from (6 × 6) to (5 × 5) we have eradicated 휀   by assuming 휎 = 0. This is plane stress assumption. 
Analysis of laminated plate having three layers and subjected to uniform pressure, simply supported on all edges is examined. For 
several values of R, the convergence study of transverse deflection and resultant stress is studied for all four materials. These four 
materials are taken from references. These materials are being repetitively used by researches to prove, analyze their theory. Hence 
these materials were chosen as core materials. Therefore, the convergence of transverse shear stress with mesh refinement is 
calculated. For finding the stiffness of core materials, MATLAB code was used.  

 

A. MATLAB Validation of The Model 
For the validation of MATLAB code, the program is used to determine the transverse deflection and transverse shear stress from a 
published literature [26] in which First Order Shear Deformation Theory is used for analysis of laminated plate.  
Effect of varying modular ratio on transverse shear stress and deflection for a simply supported square laminated plate under 
uniform pressure 

R=5 

Source 휔 휎  휎  휎  휏  휏  
A.J.M 

Ferreira[27] 
252.0836 58.8628 45.4232 9.8846 3.8311 2.5319 

FOST[26] 236.10 61.87 49.50 9.899 3.313 2.444 
Present 236.9041 57.3371 45.8697 9.1739 2.6736 13.679 

Table 1: Validation table for R=5 
 

B. Convergence Study 
Effect of varying modular ratio on transverse shear stress for a simply supported square laminated plate under uniform 
pressure(t=0.01m) for Material 1. 

1) Material 1 [28] 
퐸 = 40푀푃푎,퐸 = 1푀푃푎,퐸 = 1푀푃푎,퐺 = 0.6푀푃푎,퐺 = 0.5푀푃푎,퐺 = 0.6푀푃푎, 휈 = 0.25, 휈 = 0.25, 휈 = 0.25 

 
Stiffness matrix: 

40.1674 0.3347 0.3347 0 0
0.3347 1.0695 0.2695 0 0
0.3347 0.2695 1.0695 0 0

0 0 0 0.5 0
0 0 0 0 0.6

Q

 
 
 
 
 
 
  

 

 
R=5 

Mesh size 휔 휎  휎  휎  휏  휏  
6 × 6 1436.6 116.9215 93.5372 18.7074 1.9843 9.9215 

12 × 12 1404.3 120.8270 96.6616 19.3323 2.1686 10.8430 
24 × 24 1397.5 121.7739 97.419 19.4838 2.2623 11.3115 
30 × 30 1396.7 121.8870 97.5096 19.5019 2.2813 11.4063 

Table 2: Convergence study of square laminated plate under uniform pressure, R=5 (Material 1) 
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Figure 1:  Variation of transverse shear stress when R=5 (Material 1) 

   
R=10 

Mesh size 휔 휎  휎  휎  휏  휏  
6 × 6 1136.9 120.2890 96.2312 9.6231 1.2337 12.3371 

12 × 12 1107.7 124.8957 99.9166 9.9917 1.3568 13.5676 
24 × 24 1104.4 126.0105 100.8084 10.0808 1.4180 14.1798 
30 × 30 1100.6 126.1435 100.9148 10.0915 1.4303 14.3028 

Table 3: Convergence study of square laminated plate under uniform pressure, R=10 (Material 1) 
 

 
Figure 2: Variation of transverse shear stress when R=10 (Material 1) 

 
 

R=15 
Mesh size 휔 휎  휎  휎  휏  휏  

6 × 6 1010.9 117.5031 94.0025 6.2668 0.8823 13.2344 
12 × 12 983.7958 122.3375 97.8700 6.5247 0.9745 14.6172 
24 × 24 977.8508 123.5137 98.8110 6.5874 1.0200 15.2994 
30 × 30 977.1567 123.6541 98.9233 6.5949 1.0291 15.4360 

Table 4: Convergence study of square laminated plate under uniform pressure, R=15 (Material 1) 
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Figure 3: Variation of transverse shear stress when R=15 (Material 1) 

 
Effect of varying modular ratio on transverse deflection for a simply supported square laminated plate under uniform 
pressure(t=0.01m) for Material 1 

 
Figure 4: Variation of transverse deflection (R=5,10,15)  (Material 1)   Figure 5: Deformed shape of square laminated plate 

(Material 1) 
Effect of varying modular ratio on transverse shear stress for a simply supported square laminated plate under uniform pressure 
(t=0.01m) for Material 2. 
 
2) Material 2 [29] 
퐸 = 50푀푃푎,퐸 = 50푀푃푎,퐸 = 50푀푃푎,퐺 = 21.7푀푃푎,퐺 = 21.7푀푃푎,퐺 = 21.7푀푃푎, 휈 = 0.15, 휈 = 0.15, 휈 = 0.15 

Stiffness matrix 
5 7 .7 9 5 0 9 .3 1 6 8 9 .3 1 6 8 0 0
9 .3 1 6 8 5 7 .7 9 5 0 9 .3 1 6 8 0 0
9 .3 1 6 8 9 .3 1 6 8 5 7 .7 9 5 0 0 0

0 0 0 2 1 .7 0 0 0
0 0 0 0 2 1 .7 0 0

Q

 
 
 
 
 
 
  

 

 
R=5 

  Mesh size 휔 휎  휎  휎  휏  휏  
6 × 6 124.3595 25.9943 20.7954 4.1591 1.4298 7.1488 

12 × 12 124.1049 26.2885 21.0308 4.2062 1.6110 8.0552 
24 × 24 124.0735 26.3803 21.1043 4.2209 1.7132 8.5662 
30 × 30 124.0704 26.3917 21.1134 4.2227 1.7347 8.6736 

Table 5: Convergence study of square laminated plate under uniform pressure, R=5 (Material 2) 
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Figure 6: Variation of shear stress when R=5 (Material 2) 

 
R=10 

Mesh size 휔 휎  휎  휎  휏  휏  
6 × 6 77.1791 28.4511 22.7609 2.2761 0.9235 9.2347 

12 × 12 76.6921 28.7340 22.9872 2.2987 1.0416 10.4157 
24 × 24 76.5990 28.8236 23.0589 2.3059 1.1075 11.0754 
30 × 30 76.5884 28.8348 23.0679 2.3068 1.1214 11.2139 

Table 6: Convergence study of square laminated plate under uniform pressure R=10 (Material 2) 
 

 
Figure 7: Variation of shear stress when R=10 (Material 2) 

 
 

R=15 
Mesh size 휔 휎  휎  휎  휏  휏  

6 × 6 59.4118 29.3742 23.4994 1.5666 0.6823 10.2345 
12 × 12 58.8384 29.6393 23.7114 1.5808 0.7704 11.5558 
24 × 24 58.7221 29.7231 23.7785 1.5852 0.8192 12.2881 
30 × 30 58.7087 29.7336 23.7869 1.5858 0.8294 12.4415 

Table 7: Convergence study of square laminated plate under uniform pressure R=15 (Material 3) 
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Figure 8: Variation of shear stress when R=15 (Material 2) 

 
Effect of varying modular ratio on transverse deflection for a simply supported square laminated plate under uniform pressure 
(t=0.01m) for Material 2. 

 
Figure: 9 Variation of transverse deflection (R=5,10,15) (Material 2)    Figure: 10 Deformed shape of square laminated plate 

(Material 2) 
 

Effect of varying modular ratio on transverse shear stress for a simply supported square laminated plate under uniform pressure 
(t=0.01m) for Material 3. 
 
3) Material 3 [30] 

퐸 = 25푀푃푎,퐸 = 1푀푃푎,퐸 = 1푀푃푎,퐺 = 0.5푀푃푎,퐺 = 0.2푀푃푎,퐺 = 0.5푀푃푎, 휈 = 0.25, 휈 = 0.01, 휈 = 0.25 
Stiffness matrix: 

2 5 .1 2 6 9 0 . 2 5 3 8 0 .2 5 3 8 0 0
0 . 2 5 3 8 1 . 0 0 2 7 0 .0 1 2 6 0 0
0 . 2 5 3 8 0 . 0 1 2 6 1 .0 0 2 7 0 0

0 0 0 0 .2 0 0 0
0 0 0 0 0 . 5 0 0

Q

 
 
 
 
 
 
  

 

 
R=5 

Mesh size 휔 휎  휎  휎  휏  휏  
6 × 6 1158.2 112.1469 89.7175 17.9435 0.9267 4.6337 

12 × 12 1139.7 115.8582 92.6866 18.5373 1.0158 5.0789 
24 × 24 1135.9 116.7835 93.4268 18.6854 1.0608 5.3041 
30 × 30 1135.4 116.8944 93.5155 18.7031 1.0699 5.3497 

Table 8: Convergence study of square laminated plate under uniform pressure R=5 (Material 3) 
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Figure: 11 Variation of shear stress when R=5 (Material 3) 

 
R=10 

Mesh size 휔 휎  휎  휎  휏  휏  

6 × 6 895.5581 117.7822 94.2258 9.4226 0.5824 5.8236 
12 × 12 877.2109 121.8587 97.4869 9.7487 0.6403 6.4025 
24 × 24 873.2413 122.8783 98.3027 9.8303 0.6634 6.6937 
30 × 30 872.7784 123.0005 98.4004 9.8400 0.6752 6.7524 

Table 9: Convergence study of square laminated plate under uniform pressure R=10 (Material 3) 
 

 
Figure 12: Variation of shear stress when R=10 (Material 3) 

 
R=15 

Mesh size 휔 휎  휎  휎  휏  휏  

6 × 6 792.9925 117.7807 94.2246 6.2816 0.4217 6.3248 
12 × 12 774.8679 121.9163 97.5330 6.5022 0.4644 6.9667 
24 × 24 770.8950 122.9550 98.3640 6.5576 0.4859 7.2891 
30 × 30 770.4305 123.0795 98.4636 6.5576 0.4903 7.3541 

Table 10: Convergence study of square laminated plate under uniform pressure R=15 (Material 3) 
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Figure: 13 Variation of shear stress when R=15 (Material 3) 

 
Effect of varying modular ratio on transverse shear deflection for a simply supported square laminated plate under uniform pressure 
(t=0.01m) for Material 3. 

 
Figure: 14 Variation of transverse deflection (R=5,10,15) (Material 3)   Figure: 15 Deformed shape of square laminated plate 

(Material 3) 
 

Effect of varying modular ratio on transverse shear stress for a simply supported square laminated plate under uniform pressure 
(t=0.01m) for Material 4. 
 
4) Material 4 [29] 
퐸 = 10푀푃푎,퐸 = 10푀푃푎,퐸 = 10푀푃푎,퐺 = 0.5푀푃푎,퐺 = 0.5푀푃푎,퐺 = 0.5푀푃푎, 휈 = 0.00001, 휈 = 0.00001, 휈

= 0.00001 
Stiffness matrix: 

1 0 0 . 0 0 0 1 0 . 0 0 0 1 0 0
0 . 0 0 0 1 1 0 0 . 0 0 0 1 0 0
0 . 0 0 0 1 0 . 0 0 0 1 1 0 0 0

0 0 0 0 . 5 0
0 0 0 0 0 . 5

Q

 
 
 
 
 
 
  

 

  
R=5 

Mesh size 휔 휎  휎  휎  휏  휏  
6 × 6 269.8422 23.6530 18.9224 3.4845 1.4498 7.2488 

12 × 12 264.4463 23.8849 19.1079 3.8216 1.6441 8.2204 
24 × 24 263.2888 23.9496 19.1597 3.8319 1.7493 8.7465 
30 × 30 263.1543 23.9575 19.1660 3.8332 1.7711 8.8557 

Table 11: Convergence study of square laminated plate under uniform pressure R=5 (Material 4) 
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Figure 16: Variation of shear stress when R=5 (Material 4) 

 
R=10 

Mesh size 휔 휎  휎  휎  휏  휏  
6 × 6 216.1197 25.8969 20.7175 2.0717 0.9334 9.3336 

12 × 12 210.6182 26.1365 20.9092 2.0909 1.0598 10.5982 
24 × 24 209.4264 26.2014 20.9611 2.0961 1.1279 11.2790 
30 × 30 209.2876 26.2093 20.9674 2.0967 1.1420 11.4201 

Table 12: Convergence study of square laminated plate under uniform pressure R=10 (Material 4) 
 
 

 
Figure :17 Variation of shear stress when R=10 (Material 4) 

 
R=15 

Mesh size 휔 휎  휎  휎  휏  휏  
6 × 6 195.9632 26.7424 21.3939 1.4263 0.6882 10.3225 

12 × 12 190.4205 26.9833 21.5867 1.4391 0.7819 11.7281 
24 × 24 189.2158 27.0475 21.6380 1.4425 0.8322 12.4830 
30 × 30 189.0751 27.0553 21.6442 1.4429 0.8426 12.6392 

Table 13: Convergence study of square laminated plate under uniform pressure R=15 (Material 4) 
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Figure 18:  Variation of shear stress when R=15 (Material 4) 

 Effect of varying modular ratio on transverse deflection for a simply supported square laminated plate under uniform pressure 
(t=0.01m) for Material 4. 

 
Figure:19 Variation of transverse deflection (R=5,10,15) (Material 4)      Figure: 20 Deformed shape of square laminated plate 

(Material 4) 

VI. CONCLUSION AND FUTURE SCOPE 
A. Conclusions 
A simply supported laminated plate under uniform pressure with three layers was examined using First Order Shear Deformation 
Theory. MATLAB code was generated for finite element analysis of laminated plate. For several values of modular 
ratios(R=5,10,15) variation in transverse deflection and transverse shear stress is investigated. By increasing the number of element 
size of the plate, convergence of values of deflection and shear stress could be seen. Stress and shear stress were calculated for each 
layer. This was repeated for all four materials which were taken for study. By increasing the modular ratio of the plate, shear stress 
in three layers was seen to be decreasing. The value for transverse shear stress varied along the thickness of each layer. The current 
work holds good agreement when evaluated from literatures for static analysis. Graphical variation of transverse shear stresses is 
continuous at the layer interface which is the true behavior of composites. It delivered almost accurate result when compared to the 
theory presented in base paper. This code could be helpful in analyzing laminated plate using FSDT by varying the thickness of 
plate, load condition, boundary condition, number of layers etc.  

B. Future Scope 
We can further simplify the FSDT theory by reducing the number of unknowns. This makes easier for researcher to solve problems 
and implement in any programming. To determine the interlaminar stress using FSDT, it is not be possible therefore shear 
correction factor is being used. Working should be done in area of simplification of these theories as such theories are analytically 
very difficult to solve. Very little research work is available on the effects of moving loads on sandwich structures. Therefore, the 
study of moving load must be carried out.  
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The effects of dampers can also be studied. As the viscos-elastic materials are available as construction materials, their use in 
sandwich structures may give better results. Effects of rotatory motion and torsion also need to be studied. Due to application of 
sandwich structures in aeronautical, avionics and satellite structures, the change in stresses due to air drag can be carried out. 
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