
 

9 IX September 2021

https://doi.org/10.22214/ijraset.2021.38181



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue IX Sep 2021- Available at www.ijraset.com 
     

 
1304 ©IJRASET: All Rights are Reserved 

 

Application of Thermal Energy Storage to a 
Combined Heat and Power Plant 

 
Shahim Nisar1, Puneet Bansal2, Varinder Singh3 

1, 2, 3Student, Master of Technology Mechanical Engineering, Desh Bhagat University   Mandi Gobindgarh Punjab 
 
Abstract: The present study deals with the economic and environmental benefits that can be attained through the coupling of 
borehole thermal energy storage (BTES) and combined heat and power (CHP). Energy prices are significantly higher during the 
winter months due to the limited supply of natural gas. This dearth not only increases operating costs but also emissions, due to 
the need to burn ultra-low sulfur diesel (ULSD). The scope of this paper is to present a TRNSYS model of a BTES system that is 
designed using actual operational data from the campus CHP plant. 
 

I. INTRODUCTION 
The main objective of this research is to show the economic and environmental benefits that can be attained through the coupling of 
borehole thermal energy storage (BTES) and combined heat and power (CHP). Energy prices are significantly higher during the 
winter months due to the limited supply of natural gas. This dearth not only increases operating costs but also emissions, due to the 
need to burn ultra-low sulfur diesel (ULSD). The application of a TES system to a CHP plant allows the plant to deviate from the 
required thermal load in order to operate in a more economically and environmentally optimal manner. TES systems are charged by 
a heat input when there is excess or inexpensive energy, this heat is then stored and discharged when it is needed. The scope of this 
paper is to present a TRNSYS model of a BTES system that is designed using actual operational data from the campus CHP 
plant. 
 
A. Objective of this Study 
TES systems have greatly developed over the last 40-50 years as industrialized nations have become increasingly electrified. As 
Dincer has brought to light, ―in many countries energy is produced and transferred in the form of heat. Thus, the potential for 
thermal energy storage warrants investigation in great detail‖ [8]. The results from the prior literature have provided sound 
validation for the following research into the modeling of a seasonal TES system for the UMass CHP plant. Additionally, it was 
observed that there is limited research using actual CHP plant data to model a seasonal TES system of this scale. Thus, what makes 
this study unique is that actual operating data for a year was used from the UMass CHP plant to design and model a TES system. In 
summary, the objectives of this research are as follows: 
1) Utilize current CHP operating data to asses a proposed operation with TES 
2) Design & model the performance of a TES system in TRNSYS 
3) Asses the economic and environmental benefits of TES to CHP 
4) Investigate system cost and payback 
 

II. LITERATURE REVIEW 
A. Background 
The TRNSYS model predicts that a BTES efficiency of 88% is reached after 4 years of operation. It is concluded that the 
application of BTES to CHP enables greater flexibility in the operation of the CHP plant. Such flexibility can allow the system to 
produce more energy in low demand periods. This operational attribute leads to significantly reduced operating costs and emissions 
as it enables the replacement of ULSD or liquefied natural gas (LNG) with natural gas. 
Energy storage is critical for success in developing a sustainable energy grid because it facilitates higher renewable energy 
penetration by mitigating the gap between energy generation and demand. This review analyzes recent case studies—numerical and 
field experiments—seen by borehole thermal energy storage (BTES) in space heating and domestic hot water capacities, coupled 
with solar thermal energy. System design, model development, and working principle(s) are the primary focus of this analysis. A 
synopsis of the current efforts to effectively model BTES is presented as well.  
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The literature review reveals that: energy storage is most effective when diurnal and seasonal storage are used in conjunction; no 
established link exists between BTES computational fluid dynamics (CFD) models integrated with whole building energy analysis 
tools, rather than parameter-fit component models; BTES has less geographical limitations than Aquifer Thermal Energy Storage 
(ATES) and lower installation cost scale than hot water tanks and BTES is more often used for heating than for cooling applications. 
 

III. EXPERIMENTAL DETAILS 
The following comparative results are from the 5th year of operation for each of the five system sizes simulated. The following 
information is shown: the annual ground temperature, energy input into the BTES system, the energy remaining after losses, the 
charge pump power consumption and the BTES system efficiency. It can be seen that as the number of boreholes increases, the 
ground temperature decreases. With 11,250 boreholes, the maximum and minimum storage temperatures reached are 72oC and 
42oC,respectively. Conversely, with 12,250 boreholes the maximum and minimum storage temperatures reached are 68oC and 40oC, 
respectively. A higher ground temperature is preferable as it reduces the need for auxiliary heating at the low temperature campus 
load. 

 
Figure 3.2 Comparisons of Ground Temperatures 

Figure 3.3 shows the diminishing returns, in terms of heat input, to the BTES for increments less than 11,750 boreholes. This is due 
to the significantly higher flow rate needed to maintain a loop temperature below 90oC. From 12,000 to 11,750 boreholes the percent 
energy into the BTES is reduced by 0.53%. However, from 11,750 to 11,500 boreholes the percent decrease is 0.79% and from 
11,500 to 11,250 the percent decrease is 0.94%. 

 
Figure 3.3 Comparison of Energy into the BTES (200 hour period) 
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Figure 3.4 shows the BTES energy stored after losses. The results again show the trend of diminishing performance for increments 
less than 11,750 boreholes. From 12,000 to 11,750 boreholes the percent of BTES energy remaining is reduced by 0.58%, from 
11,750 to 11,500 boreholes the percent decrease is 0.90% and from 11,500 to 11,250 the percent decrease is 1%. 

 
Figure 3.4 Comparison of BTES Energy Remaining After Losses 

Figure 3.5 shows the pump power over a 200 hour span during the charging period. A 200 hour time span was chosen as it better 
illustrates the additional pumping power required as the system size is reduced. Figure 3.6 shows the total pumping power for the 5th 
year of operation. It can be clearly seen that there is a significant increase in pumping power as the number of boreholes is reduced. 
From 12,000 to 11,750 boreholes the pumping power increases by 50%, from 11,750 to 11,500 boreholes the pumping power 
increases by 100% and from 11,500 to 11,250 the percent increases by 83%. The increase in pumping power is due to the need to 
keep the loop temperature below 90oC. 

 
Figure 3.5 Comparison of Charging Pump Power Consumption (200 hour period) 
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Figure 3.6 Comparison of Charging Pump Power Consumption Totals 

Figure 3.7 shows the BTES efficiency for each increment of boreholes. Table 3.1 illustrates the change in efficiency for the BTES 
system. (Note, the definition for the BTES efficiency is provided in the following chapter.) The results conclude the highest BTES 
efficiency is reached at 11,750 boreholes, with a 0.01% decrease in efficiency observed for each additional increment. Furthermore, 
there is a 0.13% decrease in BTES efficiency as the number of boreholes is reduced. 

Figure 3.7 Comparison of BTES Efficiency 

The results from this analysis conclude that as the size of the storage system decreases, the pumping power required increases and 
the energy input decreases, and as a result the system performance drops. In order to maximize the offset to the campus building load 
and to reduce capital costs, it is important to choose a system with the lowest number of boreholes while maintaining high 
performance. For these reasons, a system comprised of 11,550 boreholes was chosen as it provides a lower capital cost, without 
compromising system performance. Although the larger systems use marginally less pumping power and deliver slightly more 
energy to the load, the additional capital cost incurred for the larger systems doesn’t justify the small increase in performance. 
Moreover, though smaller systems are feasible, the precipitous drop in performance for systems under 11,550 boreholes doesn’t 
substantiate the capital cost savings. 
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IV. RESULTS AND DISCUSSION 
The UMass CHP plant has a SCADA system, which is capable of storing and transmitting instantaneous data about the plant’s 
operation from 675 points in the system. This data includes, steam flows, fuel flows, temperature, pressure, power produced, and 
other critical data. Hourly data from 2020 was used to observe the current operation of the campus CHP plant in order to help model 
the proposed operation of the plant with BTES. When the spring semester ends in early May, the thermal load of the campus is 
reduced and it increases again as the fall semester begins in September. The average hourly steam produced by the HRSG for 
May through September is approximately 60,000 pph. Thus, there is an opportunity to increase the steam production of the HRSG 
to 100,000 pph during this period to accommodate the application of a BTES system. By setting the steam flow to 100,000 pph, it 
was determined that an additional 141,086,294 lbs of steam will be produced. This requires an additional 232,932 MMBtus (68,318 
MWh) of natural gas. Using the temperature and pressure at the exit of the HRSG, it was determined that the average enthalpy is 
1369 Btu/lb. This corresponds to an overall energetic steam input to the system of 193,139 MMBtus (56,647 MWh). A BTES 
system comprised of 11,750 boreholes was designed and simulated in TRNSYS, utilizing the proposed operational data of the CHP 
plant. The results from this assessment are presented in this chapter. A summary of the current and proposed operation (with TES 
charging) is given intables 4.1 & 4.2. Table 4.1 assumes that the thermal energy storage is used solely to offset ULSD. Table 4.2 
assumes that the thermal energy stored is used to offset. 

Table 4.2 Current & Proposed CHP Plant Operation (LNG Reduction) 
Summary of Results (LNG Offset) 

 
Power 
Produced 
(MWh) 

Steam 
Produced 
(lbs) 

Natural Gas Fuel 
Input 

 
LNG Fuel Input 

 
ULSD Fuel Input 

MMBtu MWh MMBtu MWh MMBtu MWh 

Current 
Operation 

89,367 1,026,504,140 1,193,600 350,079 158,197 46,399 328,651 96,392

Proposed 
Operation 

97,880 1,167,590,434 1,426,531 418,398 6,525 1,914 328,651 96,392

Increase (+) 
Decrease (-) 

8,513 141,086,294 232,932 68,318 -151,672 -44,485 0 0 

 
A. BTES & System Efficiency 
The overall BTES efficiency is defined as the energy recovered divided by the energy input and is as follows [8]: 

ߟ = ୬ୣ୰୷ ୖୣୡ୭୴ୣ୰ୣୢ 
୬ୣ୰୷ ୍୬୮୳୲

= ୬ୣ୰୷ ୲୭ ୭ୟୢ
୬ୣ୰୷ ୧୬୲୭ ୗ

     (16) 

 
Additionally, it is vital to determine the effect that the TES system has on the overall efficiency of the CHP plant. Past research on 
the UMass CHP plant has concluded that the overall plant efficiency is 73%. Where the overall CHP plant efficiency (ηCHP) is 
defined as follows [27]: 
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B. System Performance 
The TRNSYS simulation was performed for a five year period in one hour time steps. The BTES utilizes 11,750 single U-tube heat 
exchangers at a depth of 30m for an approximate storage volume of 1,477,000 m3. The simulation was run for five years in order to 
observe how the performance changed over time and to allow the system to reach steady state operation. It is expected that 80% of 
the steady state efficiency values will be obtained after approximately three years of operation [21]. At the fifth year of operation the 
maximum ground temperature and charging fluid inlet and outlet temperatures were found to remain constant at 70oC, 90oC and 
86oC, respectively. See figure 4.1 below.  

 
Figure 4.1 Year 5 Ground, Inlet & Outlet Temperatures 

The following figures show the performance of the system over a year. Figure 4.2 shows the energy injection during the charging 
period and energy extraction during the discharging period. Figure 4.3 shows the charge and discharge pump power, as well as the 
ground and ambient temperatures for the 5th year of operation. 
 

Figure 4.2 Year 5 BTES Energy Injection/Extraction 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue IX Sep 2021- Available at www.ijraset.com 
     

 
1310 ©IJRASET: All Rights are Reserved 

 

Figure 4.3 Charge and Discharge Pump Power, Ambient and Ground Temperatures 

The summary of the system performance as presented in Table 4.3 is separated into four categories: a summary of the BTES system, 
the distribution system (charge and discharge pumps), the steam turbines and a system energy balance. It is shown that after the third 
year the system begins to approach its steady state average ground temperature of approximately 56oC and after the fourth year of 
operation the BTES system efficiency remains constant at 88%. The model predicts that as the temperature of the soil increases, the 
BTES efficiency increases from 15% to 88%. 

Table 4.3 System Performance Summary 
 Heat Flow Summary 

Year of Operation 1 2 3 4 5 

BTES System 

Energy into BTES (MWh) 44,034 42,896 41,916 41,937 41,919 

BTES Losses (MWh) 3,784 5,666 6,838 5,688 5,194 

Total 40,250 37,230 35,078 36,248 36,725 

Ηbtes 15% 44% 64% 88% 88% 

o 
Taverage ( C) 

27 43 55 56 56 

T (oC) 
Max 

44 58 70 70 70 

Tmin (oC) 13 28 41 41 41 

Distribution Pumps 

PCharge (MWh) 280 280 280 280 280 

PDischarge (MWh) 91 261 371 506 506 

Total 371 540 651 785 785 

Steam Turbine Analysis 

PHPST (MWh) 2,721 2,721 2,721 2,721 2,721 

PLPST (MWh) 5,792 5,792 5,792 5,792 5,792 

Total 8,513 8,513 8,513 8,513 8,513 

System Energy Balance 

In
 Steam Energy Into 

System (MWh) 56,647 56,647 56,647 56,647 56,647 

O
ut

 Steam Turbine Power (MWh) 
-8,513 -8,513 -8,513 -8,513 -8,513 

BTES Losses (MWh) -3,784 -5,666 -6,838 -5,688 -5,194 

Energy to Load (MWh) -6,608 -18,942 -26,955 -36,738 -36,738 

Condensate Return 
Energy (MWh) -4,220 -5,283 -6,207 -6,184 -6,202 

 Energy Balance (MWh) 33,522 18,243 8,134 -476 0 
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As the steam flow during the charging period is increased to accommodate the charging of the BTES, additional electricity is 
produced by the HPST and LPST. These turbines were modeled in TRNSYS using flow following turbine (Type592) and the 
generators were modeled using a Type599. Where the maximum power produced from the HPST and LPST is limited to 2 MW and 
4 MW, respectively. The additional steam flow in the summer months enables these turbines to produce on addition 8,513 MWh 
combined. This increased generation of onsite power by the CHP plant directly corresponds to a reduction in power purchased from 
the grid. This offset results in an annual reduction of CO2, NOx and SO2 emissions by 3,900,057 kg, 2,201 kg and 4,826, 
respectively. Note, more information on emission factors is provided in appendix D. 

Figure 4.4. HPST & LPST TRNSYS Model 
 
C. Economics & Emissions Results (ULSD) 
A summary of the system economics and change in emissions for a five year span is presented. The energy to the load represents the 
energy discharged from the storage system that is used to offset campus heating. The boiler energy offset represents the equivalent 
boiler fuel input needed to generate the energy to the load 
 

V. CONCLUSIONS AND FUTURE WORK 
TES is applicable to domestic systems, district heating, and industrial needs. The most popular and commercial heat storage medium 
is water, which has a number of residential and industrial applications. Underground storage of sensible heat in both liquid and solid 
media is also used for typically large-scale applications. However, TES systems based on SHS offer a storage capacity that is 
limited by the specific heat of the storage medium. Furthermore, SHS systems require proper design to discharge thermal energy at 
constant temperatures. PCMs can offer a higher storage capacity that is associated with the latent heat of the phase change. PCMs 
also enable a target- oriented discharging temperature that is set by the constant temperature of the phase change. Melting 
temperature, latent heat of fusion, and PCM thermo-physical issues are three basic factors influencing the selection of PCMs in any 
application. A high heat of fusion and a precise melting/solidification temperature (without subcooling) are two primary 
requirements in the selection approach. Numerous mechanical and nano-level enhancements have been achieved to Sustainability 
2019, 10, 191 28 of 32 increase the heat transfer rate, which is promising. Micro- encapsulation increases the heat transfer surface 
area and is also a solution for phase segregation in salt hydrates. Most of the literature is focused on routine and commercialized 
PCM materials such as paraffin. We recommend focusing on special PCMs with a wide temperature range such as salt hydrates and 
synthesizing specialized PCMs suitable for specific building applications. TCS can offer even higher storage capacities. Thermo-
chemical reactions such as adsorption can be used to accumulate and discharge heat and cold on demand and to control humidity in a 
variety of applications using different chemical reactants. In CTES, materials with subzero temperatures are identified, but their 
thermal reliability, phase-segregation and subcooling issues have not been deeply studied. Studies on industrial (large scale) level 
thermal cold storage PCMs are hardly tested. At present, TES systems based on sensible heat are commercially available, while 
TCS- and PCM-based storage systems are mostly under development and demonstration. Support for the R&D of new storage 
materials, as well as policy measures and investment incentives for TES integration in buildings, for industrial applications, and for 
variable renewable power generation, is essential if its deployment is to be fostered. In future greenhouses, TES solutions can 
combine heating–cooling–dehumidification functions and provide poly-generation possibilities. 

 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue IX Sep 2021- Available at www.ijraset.com 
     

 
1312 ©IJRASET: All Rights are Reserved 

 

VI. ACKNOWLEDGMENT 
I am grateful to the almighty that provided me enough strength and courage to overcome all my difficulties in the completion of 
this challenging work. I acknowledge those who stood by me, supported and encouraged me throughout. Words fail me to 
express my heartiest and profound sense of gratitude to my supervisor, Mr. Puneet , under whose supervision, I have completed 
the thesis work. Without his hard working, erudition and helpful nature, it was not possible for me to complete the thesis. It 
would not have been possible for me to complete this work without the help of different scholars and resource persons. 
I am very thankful to the authorities of Desh Bhagat University library, Mandi Gobindgarh, Bhai Kahan Singh Nabha Library, 
Punjabi University, Patiala, Panjab University Punjab university library, Chandigarh, Guru Nanak Dev University Library , 
Amristar, tribune office and Punjab Vidhan Sabha Library, Punjab Secretariat library, Chandigarh for allowing me to consult all 
the relevant sources, records, books and newspapers. I am very thankful to all the authorities that very kindly provided me with all 
necessary facilities. 

REFERENCES 
[1] Dabkienė, Vida. "Footprint of Agriculture." Structural Change, Productivity, and Climate Nexus in Agriculture. Springer, Cham, 2021. 193-259. 
[2] Matthew, Oluwatoyin, et al. "Greenhouse gas emissions and health outcomes in Nigeria: Empirical insight from ARDL technique." International Journal of 

Energy Economics and Policy 8.3 (2018): 43-50. 
[3] Lynch, John, and Tara Garnett. "Policy to Reduce Greenhouse Gas Emissions: Is Agricultural Methane a Special Case?." EuroChoices 20.2 (2021): 11-17. 
[4] Lynch, J. and Garnett, T., 2021. Policy to Reduce Greenhouse Gas Emissions: Is Agricultural Methane a Special Case?. EuroChoices, 20(2), pp.11-17. 
[5] Kim, Jeong F., and Enrico Drioli. "Transport Membrane Condenser Heat Exchangers to Break the Water-Energy Nexus—A Critical Review." Membranes 

11.1 (2021): 12. 
[6] Kim, J.F. and Drioli, E., 2021. Transport Membrane Condenser Heat Exchangers to Break the Water-Energy Nexus—A Critical Review. Membranes, 11(1), 

p.12. 
[7] Kelly, Henry. "Energy Efficiency: An Introduction." Energy Efficiency: Innovations: Driving Prosperity, 

Slashing Emissions 6 (2020): 1. 
[8] Jouhara, Hussam, et al. "Latent thermal energy storage technologies and applications: A review." International Journal of Thermofluids 5 (2020): 100039. 
[9] Jebasingh, B. Eanest, and A. Valan Arasu. "A detailed review on heat transfer rate, supercooling, thermal stability and reliability of nanoparticle 

dispersed organic phase change material for low-temperature applications." Materials Today Energy 16 (2020): 100408. 
[10] Bhardwaj, A. K., et al. "Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM." 

Sustainable Energy Technologies and Assessments 45 (2021): 101119. 
[11] Yang, T., Liu, W., Kramer, G. J., & Sun, Q. (2021). Seasonal thermal energy storage: A techno-economic literature review. Renewable and Sustainable 

Energy Reviews, 139, 110732. 
[12] Manufacturers, A. "1.6 COORDINATION." PROJECT MANUAL (2020): 7214. 
[13] Gasanzade, F., Pfeiffer, W. T., Witte, F., Tuschy, I., & Bauer, S. (2021). Subsurface renewable energy storage capacity for hydrogen, methane and compressed 

air–A performance assessment study from the North German Basin. Renewable and Sustainable Energy Reviews, 149, 111422. 
[14] King, M., Jain, A., Bhakar, R., Mathur, J., & Wang, J. (2021). Overview of current compressed air energy storage projects and analysis  of the  potential 

underground storage capacity in India and the UK. Renewable and Sustainable Energy Reviews, 139, 110705. 
[15] Cato, Kerry, and Brett Goforth. "Alluvial Fan Alteration Due to Debris-Flow Deposition, Incision, and Channel Migration at Forest Falls, California." 

Environmental & Engineering Geoscience 27, no. 1 (2021): 29-41. 
[16] Villa, S. (2020). A numerical methodology and analysis of borehole thermal energy storage performance. 
[17] Villa, Sai. "A numerical methodology and analysis of borehole thermal energy storage performance." (2020). 
[18] Villa, S., 2020. A numerical methodology and analysis of borehole thermal energy storage performance. 
[19] Manufacturers, A. "1.6 COORDINATION." PROJECT MANUAL (2020): 7214. 
[20] Jouhara, Hussam, et al. "Latent thermal energy storage technologies and applications: A review." International Journal of Thermofluids 5 (2020): 100039. 
[21] D. Laing, M. Eck, M. Hampel, M. Johnson, W.-D. Steinmann, M. Meyer- Grunefeldt, et al., High Temperature PCM Storage for DSG Solar Thermal Power 

Plants Tested in Various Operating Modes of Water/Steam Flow, German Aerospace Center (DLR), Institute of Technical Thermodynamics, Stuttgart, 
Germany, n.d. 

[22] Wołoszyn, Jerzy, Krystian Szopa, and Grzegorz Czerwiński. "Enhanced heat transfer in a PCM shell-and-tube thermal energy storage system." Applied 
Thermal Engineering 196 (2021): 117332. 

[23] Abokersh, Mohamed Hany, et al. "Sustainability insights on emerging solar district heating technologies to boost the nearly zero energy building concept." 
Renewable Energy (2021). 

[24] Wong, Jorge B., and John M. Kovacik. "Cogeneration and distributed generation." Energy 
Management Handbook. River Publishers, 2020. 171-208. 

[25] Villa, S., 2020. A numerical methodology and analysis of borehole thermal energy storage performance. 
[26] Durga, Siddarth, et al. "Techno-economic analysis of decarbonizing building heating in Upstate New York using seasonal borehole thermal energy storage." 

Energy and Buildings 241 (2021): 110890. 



 


