



IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 9 Issue: IX Month of publication: September 2021 DOI: https://doi.org/10.22214/ijraset.2021.38239

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com



# Estimation of Parameters of Pert Distribution by Using Method of Moments

K. Srinivasa Rao<sup>1</sup>, N. Viswam<sup>2</sup>, G.V. S. R. Anjaneyulu<sup>3</sup>

<sup>1</sup>Research Scholar Department of Statistics, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
 <sup>2</sup>HOD & Principal, Department of Statistics, Hindu College, Guntur, Andhra Pradesh. India
 <sup>3</sup>Professor, Department of Statistics, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India

Abstract: The method of moments has been widely used for estimating the parameters of a distribution. Usually lower order moments are wont to find the parameter estimates as they're known to possess less sampling variability. The method of moments may be a technique for estimating the parameters of a statistical model. It works by finding values of the parameters that end in a match between the sample moments and therefore the population moments (as implied by the model). the Method of moment Estimator is used to find out Estimates the parameters of PERT Distribution. We also compare equispaced and unequispaced Optimally Constructed Grouped data by the method of an Asymptotically Relative Efficiency. We also computed Average Estimate (AE), Variance (VAR), Standard Deviation (STD), Mean Absolute Deviation (MAD), Mean Square Error (MSE), Simulated Error (SE) and Relative Absolute Bias (RAB) for both the parameters under grouped sample supported 1000 simulations to assess the performance of the estimators. Keywords: Method of Moments, PERT Distribution, equispaced and unequipped Optimal Grouped sample.

## I. INTODUCTION

The method of moments is an alternative to the maximum likelihood method of estimating values of PERT density function parameters that describe the size distribution.

The method of moments of estimation was introduced by Karl Pearson (1894, 1895). The procedure consists of equating as many population moments to sample moments as there are parameters to estimate. Mathematical support for this procedure comes from the principle of moments as discussed intimately in Kendall and Stuart (1969). In essence, this principle says that two distributions that have a finite number of lower moments in common are going to be approximations of 1 another. Thus, the distribution of the data is approximated by equating the moments of a distributional form to the data moments. To see how this could be done with the three-parameter PERT distribution.

The method of moments considered that best estimates of the parameters of a probability distribution are those that moments of the PDF about the source are adequate to the corresponding moments of the sample data. Pearson originally considered only moments about the origin, but later it became customary to use the variance as the second central moment and the coefficient of sleekness as the standardized third central moment, to work out second and third parameters of the distribution if necessary.

In the method of moments approach, the parameters of a probability distribution model are estimated by matching the moments of the dataset thereupon of the candidate model. The number of moments required corresponds to the amount of unknown model parameters. Application of this method is simple, as closed-form expressions for the moments are often readily derived for many common distributions. However, the raw moments could also be biased thanks to the presence of outliers and/or the shortage of perfect agreement between the info and therefore the model.

The estimation of parameters of the three-parameter generalized exponential distribution introduced by Hossain and Ahsanullah [5] by using the utmost likelihood estimation and therefore the method of moments. Rameshwar D. Gupta (2000), And Debasis Kundu Studied. The Generalized Exponential Distribution: Different Method of Estimations. Recently a full derivation of the conditional moment equations was derived and numerical results show that when the utmost order of the considered moments is high, the amount of equations that have to be integrated is usually much smaller for the conditional moments approach and the resulting equations are less stiff(2013). Syed Afzal Hossain (2018) studied Estimating the Parameters of a Generalized Exponential Distribution, here discussed the maximum likelihood (ML) method and the method of moments to estimate the parameters.



International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue IX Sep 2021- Available at www.ijraset.com

In this paper, we discuss about the estimation procedure for the unknown parameters for PERT distribution. The idea behind the Method of Moments (MoM) parameter estimation is to determine the parameters for given the sample data. We present MoM of the unknown parameters of PERT distribution using Newton-Raphson iterative procedure. We also computed Average Estimate (AE), Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE), Relative Absolute Bias (RAB) and Relative Efficiency (RE) for three parameters under sample based on 10,000 simulations to assess the performance of the estimators. A simulation study is conducted to evaluate the performance of the Method of Moment estimates. Finally, the proposed estimation method is applied on real and generalized data sets the results are given. Which illustrate Method of Moments estimation of unknown parameters for PERT distribution?

A random variable X ~ PERT (a, b, c) has probability density function and is in the form

$$f_{PERT}(x; a, b, c) = \frac{(x-a)^{\alpha-1}(c-x)^{\beta-1}}{\beta(\alpha,\beta)(c-a)^{\alpha+\beta-1}}; a < x < c \qquad \dots (1)$$
  

$$\alpha = \frac{4b+c-5a}{c-a}; \beta = \frac{5c-a-4b}{c-a}$$
  
(a, b, c) are parameters of PERT distribution

A random variable X ~ PERT (a, b, c) has cumulative distribution function and is in the form

$$F_{PERT}(x; a, b, c) = \frac{(-1)^{\alpha} \beta(\frac{z}{z-1}; a, 1-a-b)}{\beta(\alpha, \beta)}; a < x < c \qquad \dots (2)$$
  
Here,  $z = \frac{x-a}{\beta(\alpha, \beta)}$ 

A random variable X ~ PERT (a, b, c) has Quantile function and is in the form The  $p^{th}$  quantile  $x_p$  of PERT distribution is of the equation.

$$x_{p} = a + (c-a) \frac{\alpha + (p - \frac{5}{6})}{\alpha + \beta + (p - \frac{7}{6})} \qquad \dots (3)$$

Let U ~ U(0,1), then equation (4.3) can be used to simulate a random sample of size 'n' from the PERT distribution as follows

$$\mathbf{x}_{i} = \mathbf{a} + (\mathbf{c} - \mathbf{a}) \frac{\alpha + (u_{i} - \frac{-}{6})}{\alpha + \beta + (u_{i} - \frac{-}{6})}, \ i = 1, 2, \dots, n.$$
(4)

### **II. ESTIMATION OF PARAMETERS OF PERT DISTRIBUTION USING METHOD OF MOMENTS**

If X follows the PERT distribution then K<sup>th</sup> moment of PERT distribution is given by

 $\mathrm{E}(\mathrm{X}^{k}) = \int_{a}^{c} x^{k} f(a, b, c) dx$ ...(5)

The moments of PERT distribution as follows

$$\begin{split} E(X) &= \frac{a+4b+c}{6} = \mu & \dots (6) \\ E(X^2) &= \frac{a^2\beta(\beta+1)+2aca\beta+c^2\alpha(\alpha+1)}{42} & \dots (7) \\ E(X^3) &= \frac{a^3\beta(\beta+1)(\beta+2)+3a^2ca\beta(\beta+1)+3c^2a\alpha\beta(\alpha+1)+c^2\alpha(\alpha+1)(\alpha+2)}{336} & \dots (8) \\ E(X^4) &= \frac{a^4\beta(\beta+1)(\beta+2)(\beta+3)+4a^3c\alpha\beta(\beta+1)(\beta+2)+6a^2c^2\alpha\beta(\alpha+1)(\beta+1)+4c^3a\alpha(\alpha+1)(\alpha+2)+c^4\alpha(\alpha+1)(\alpha+2)(\alpha+3)}{2024} \end{split}$$

3024

... (9) By using the (5) and (6), we get Mean =  $\hat{\mu} = \bar{x} = \frac{a+4b+c}{6}$ ... (10)

Variance = 
$$\hat{\sigma}^2 = \frac{(c-a)^2}{36}$$
 ... (11)

Solving (11), we have

$$\hat{a} = \frac{(c-\hat{\sigma})}{6} \qquad \dots (12)$$

$$\hat{c} = \frac{6\bar{x} - 7c + \hat{\sigma}}{24} \qquad \dots (13)$$



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue IX Sep 2021- Available at www.ijraset.com

#### **III. SIMULATION STUDY**

In this section, we develop a simulation study. The major goal of these simulations is to calculate the efficiency of the Method of Moments estimation method for the parameters of the PERT distribution. The subsequent procedure was adopted as follows: Step 1: Set the sample size 'n' and the vector of parameter values  $\Psi = (\alpha, \beta)$ .

Step 2: Using the values obtained in step (2), compute  $\hat{\alpha}_{MOM}$  and  $\hat{\beta}_{MOM}$  through Method of Moments.

Step3: Repeat steps (2) and (3) N times

Step4: Using  $\widehat{\Psi}$  of  $\Psi$ , compute the Average Estimate (AE), Variance (VAR), Standard Deviation (SD), Mean Square Error (MSE), Relative Absolute Bias (RAB) and Relative Error (RE). If  $\widehat{\Psi}_{lm}$  is Method of Moments estimate method of  $\widehat{\Psi}_m$ , m=1, 2 where  $\Psi_m$  is a general notation that can be replaced by  $\Psi_1 = \alpha$ ,  $\Psi_2 = \beta$  based on sample l, (l = 1, 2, ..., r), then the Average Estimate (AE), Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB) and Relative Error (RE) are given respectively by

Average Estimate 
$$(\hat{\psi}_m) = \frac{\sum_{i=1}^{r} \psi_{lm}}{r}$$
  
Variance $(\hat{\psi}_m) = \frac{\sum_{i=1}^{r} (\hat{\psi}_{lm} - \overline{\psi}_{lm})^2}{r}$   
SD  $(\hat{\psi}_m = \sqrt{\frac{\sum_{i=1}^{r} (\hat{\psi}_{lm} - \overline{\psi}_{lm})^2}{r}}$   
Mean Absolute Deviation $(\hat{\psi}_m) = \frac{\sum_{i=1}^{r} Med(|\hat{\psi}_{lm} - \overline{\psi}_{lm}|)}{r}$   
Mean Square Error  $(\hat{\psi}_m) = \frac{\sum_{i=1}^{r} (\widehat{\psi}_{lm} - \psi_m)^2}{r}$   
Relative Absolute Bias $(\hat{\psi}_m) = \frac{\sum_{i=1}^{r} |(\widehat{\psi}_{lm} - \psi_m)|}{r\psi_m}$   
Relative Error $(\hat{\psi}_m) = \frac{1}{r} \left(\frac{\sum_{i=1}^{r} MSE\sqrt{(\widehat{\psi}_{lm})}}{\psi_m}\right)^2$ 

The results were computed using the software R (R Core Development Team). The seed used to generate the random values. The chosen values to perform this procedure were N = 10,000, and n = (20, 40, 60, ..., 200). For different population parameter values.

#### IV. APPLICATIONS

In this section, we considered two real data sets. First data set consists of 62 observations of the strengths of 3.5 cm glass fibres, originally obtained by workers at the UK National Physical Laboratory. analyzed by Smith and Naylor (1987). The second data set is presented by Boag (1949) and is related to the ages (in months) of 18 patients who died from other causes than cancer.

In this Section, our simulation study indicated that the MoM estimators should be used for estimating the parameters of the PERT distribution. Initially, we compared the estimates obtained from the different procedures with the MoM estimator. Then, we compared the results obtained from the PERT distribution fitted by the MoM estimators with some common lifetime models, such as Uniform and Triangular distributions.

The Kolmogorov-Smirnov (KS) test is considered to check the goodness of fit. This procedure is based on the KS statistic  $D_n = sup_x |F_n(x) - F_0(x)|$ 

Where  $sup_x$  is the supremum of the set of distances,

 $F_n(x)$  is the empirical distribution function and  $F_0(x)$  is cumulative distribution function. In this case, we test the null hypothesis that the data comes from  $F_0(x)$  and with significance level of 5%, we will reject the null hypothesis if p value is smaller than 0.05. As discrimination criterion method, we considered the AIC (Akaike Information Criteria) computed, respectively, by

 $AIC = -2l(\widehat{\Psi}, x) + 2k$ 

Where k is the number of parameters fitted and  $\widehat{\Psi}$  is estimate of  $\Psi$ .

The data set consists of 62 observations of the strengths of 3.5 cm glass fibres, originally obtained by workers at the UK National Physical Laboratory with ( $\alpha$ ) = 4 and

 $(\beta) = 2$ . The data are:

4.99, 3.97, 2.18, 3.14, 2.19, 4.96, 2.66, 4.98, 3.37, 2.85, 4.88, 3.27, 4.29,3.29, 4.10, 4.76, 4.49, 4.24, 2.85, 3.16, 2.16, 2.34, 3.84, 4.52, 2.89, 4.87, 2.87, 2.40, 4.30, 3.73, 3.45, 4.98, 4.43, 2.09, 2.30, 2.89, 2.53, 2.01, 4.94, 2.23, 4.15, 2.73, 3.59, 3.27, 4.70, 2.14, 4.84, 4.46, 4.42, 2.57, 3.64, 3.54, 3.70, 3.95, 2.98, 4.23, 3.78, 4.84, 3.54, 3.03, 2.98, 3.89. These data have also been analyzed by Smith and Naylor (1987). We obtained



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue IX Sep 2021- Available at www.ijraset.com

## $\hat{\alpha}_{MOM} = 2.247 \text{ and } \hat{\beta}_{MOM} = 1.5874.$

Results of the KS test (p value), AIC for the different probability distributions considering the above data set

| Test | PERT    | Uniform | Triangular |
|------|---------|---------|------------|
| KS   | 0.5148  | 0.01254 | 0.1689     |
| AIC  | 2015.23 | 2654.8  | 2421.13    |

Boag Data Set 2

The data set related to the ages (in months) of 18 patients who died from other causes than cancer extracted from Boag (1949), which considered the PERT distribution to describe such data.

0.3, 4, 7.4, 15.5, 23.4, 46, 46, 51, 65, 68, 83, 88, 96, 110, 111, 112, 132, 162.

.0.3, 4, 7.4, 15.5, 23.4, 46, 46, 51, 65, 68, 83, 88, 96, 110, 111, 112, 132, 162. We obtained

 $\hat{\alpha}_{MoM} = 1.1236 \text{ and } \hat{\beta}_{MoM} = 2.2487$ 

Results of the KS test (p value), AIC for the different probability distributions considering the above data set

| Test | PERT    | Uniform | Triangular |
|------|---------|---------|------------|
| KS   | 0.4965  | 0.0001  | 0.0018     |
| AIC  | 1154.65 | 2587.25 | 2014.56    |

Comparing the empirical function with the adjusted distributions, a better fit for the PERT distribution among the chosen models can be observed. This result is confirmed from AIC, since PERT distribution has the minimum values among the chosen models. Moreover, considering a significance level of 5%, the PERT distribution was the only model in which p values returned from the KS test were greater than 0.05.

Method of Moments (MoM) for estimating the PERT (a,b,c) Newton-Raphson simulation for a three parameter combinations and the process is repeated 10,000 times for different sample sizes n=20(20)200 are considered. The MoMs and their Average Estimate (AE), Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) of the parameters are unknown population parameters of PERT distribution. Population parameters a=5, b=6 and c=7 in Table 4.1.

TABLE-4.1 Method of Moment for Estimating the PERT Distribution (a=5, b=6 and c=7)

|             |             | 1      | 0      |        | `      | ,       | ,      | -      |
|-------------|-------------|--------|--------|--------|--------|---------|--------|--------|
| Sample size | Para meters | AE     | VAR    | SD     | MAD    | MSE     | RAB    | RE     |
| 20          | а           | 3.1354 | 0.8885 | 0.9154 | 0.7245 | 1.9194  | 0.9989 | 0.7985 |
|             | b           | 4.0245 | 0.8368 | 0.8574 | 0.6123 | 1.9213  | 0.9987 | 0.6958 |
|             | с           | 5.0198 | 0.8924 | 0.9121 | 0.4526 | 1.9417  | 0.9754 | 0.6932 |
| 40          | a           | 3.2359 | 0.8847 | 0.9032 | 0.6958 | 1.90549 | 0.9687 | 0.6985 |
|             | b           | 4.1287 | 0.7651 | 0.7798 | 0.5964 | 1.9172  | 0.9621 | 0.6358 |
|             | с           | 5.1387 | 0.8832 | 0.902  | 0.4625 | 1.8316  | 0.9124 | 0.6158 |
| 60          | а           | 3.3165 | 0.8775 | 0.8854 | 0.6178 | 1.8244  | 0.8932 | 0.6658 |
|             | b           | 4.2698 | 0.7184 | 0.7265 | 0.4968 | 1.8146  | 0.8721 | 0.5987 |
|             | с           | 5.2364 | 0.8638 | 0.8765 | 0.4785 | 1.8099  | 0.8997 | 0.5986 |
| 80          | а           | 3.5689 | 0.8065 | 0.8245 | 0.5968 | 1.8081  | 0.8365 | 0.5721 |
|             | b           | 4.5364 | 0.6865 | 0.7085 | 0.4352 | 1.7646  | 0.8254 | 0.5687 |
|             | с           | 5.5024 | 0.8435 | 0.8521 | 0.3965 | 1.8101  | 0.8387 | 0.5123 |
| 100         | а           | 3.9658 | 0.7543 | 0.7956 | 0.4752 | 1.8038  | 0.8254 | 0.5236 |
|             | b           | 4.7698 | 0.6547 | 0.6874 | 0.4132 | 1.7313  | 0.8054 | 0.5478 |
|             | с           | 5.9864 | 0.7786 | 0.7865 | 0.2968 | 1.7585  | 0.8198 | 0.4587 |
| 120         | a           | 4.1028 | 0.6982 | 0.7145 | 0.4325 | 1.7039  | 0.8247 | 0.4265 |
|             | b           | 5.198  | 0.6448 | 0.6654 | 0.3965 | 1.7011  | 0.7154 | 0.5368 |



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue IX Sep 2021- Available at www.ijraset.com

|     | с | 6.1586 | 0.7368 | 0.7587 | 0.2754 | 1.7033 | 0.7965 | 0.3254 |
|-----|---|--------|--------|--------|--------|--------|--------|--------|
| 140 | a | 4.3896 | 0.6462 | 0.7241 | 0.3658 | 1.7008 | 0.7154 | 0.5478 |
|     | b | 5.2687 | 0.5867 | 0.6024 | 0.2965 | 1.6034 | 0.6587 | 0.4598 |
|     | с | 6.3698 | 0.6458 | 0.6687 | 0.2636 | 1.6034 | 0.6687 | 0.3621 |
| 160 | a | 4.5473 | 0.6364 | 0.6879 | 0.2269 | 1.6128 | 0.6498 | 0.5147 |
|     | b | 5.6935 | 0.4963 | 0.5784 | 0.2684 | 1.5035 | 0.5565 | 0.3254 |
|     | с | 6.5368 | 0.5968 | 0.6178 | 0.2564 | 1.5037 | 0.5368 | 0.3124 |
| 180 | a | 4.7965 | 0.5736 | 0.6024 | 0.2154 | 1.6107 | 0.5471 | 0.3021 |
|     | b | 5.7635 | 0.3987 | 0.4658 | 0.2487 | 1.5003 | 0.4921 | 0.2965 |
|     | с | 6.7635 | 0.5598 | 0.5687 | 0.2015 | 1.5004 | 0.6789 | 0.2547 |
| 200 | a | 4.8657 | 0.5496 | 0.5748 | 0.2141 | 1.5151 | 0.5163 | 0.2531 |
|     | b | 5.7632 | 0.3865 | 0.4187 | 0.1968 | 1.4053 | 0.41   | 0.2245 |
|     | с | 6.6981 | 0.5269 | 0.5541 | 0.2001 | 1.4137 | 0.6352 | 0.2278 |

## • Observations

> Average Estimate (AE) of PERT parameters by MLE are increased when sample size is increased.

Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) by MLE is decreased when sample size is increased.

Method of Moments (MoM) for estimating the PERT (a,b,c) Newton-Raphson simulation for a three parameter combinations and the process is repeated 10,000 times for different sample sizes n=20(20)200 are considered. The MoMs and their Average Estimate (AE), Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) of the parameters are unknown population parameters of PERT distribution. Population parameters a=2, b=2.5 and c=3 in Table 4.2.

| Sample size | Para meters | AE     | VAR    | SD     | MAD    | MSE    | RAB    | RE     |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|
|             | а           | 0.8954 | 0.7102 | 0.8457 | 0.6587 | 1.9987 | 0.8145 | 0.7985 |
| 20          | b           | 0.8997 | 0.6754 | 0.7854 | 0.5587 | 1.9954 | 0.7798 | 0.7625 |
|             | с           | 1.1354 | 0.5867 | 0.7725 | 0.5841 | 1.9854 | 0.6653 | 0.9465 |
|             | а           | 0.9584 | 0.5768 | 0.6658 | 0.6021 | 1.9354 | 0.6458 | 0.6357 |
| 40          | b           | 1.1254 | 0.4932 | 0.6987 | 0.5487 | 1.9287 | 0.6958 | 0.8706 |
|             | с           | 1.1524 | 0.3987 | 0.6125 | 0.5252 | 1.9232 | 0.4236 | 0.7049 |
| 60          | a           | 1.1587 | 0.5829 | 0.5921 | 0.5028 | 1.8925 | 0.6254 | 0.617  |
|             | b           | 1.8457 | 0.5487 | 0.5353 | 0.5387 | 0.8547 | 0.5869 | 0.5647 |
|             | с           | 1.8546 | 0.3147 | 0.5147 | 0.4587 | 0.8547 | 0.4103 | 0.3996 |
|             | а           | 1.2987 | 0.4657 | 0.4721 | 0.4998 | 1.8657 | 0.4987 | 0.4514 |
| 80          | b           | 1.9658 | 0.5252 | 0.5224 | 0.5147 | 0.7965 | 0.5364 | 0.5291 |
|             | с           | 1.8965 | 0.2874 | 0.4545 | 0.3658 | 0.8547 | 0.2935 | 0.2694 |
|             | а           | 1.3254 | 0.2699 | 0.5014 | 0.4243 | 1.6854 | 0.3698 | 0.3557 |
| 100         | b           | 1.9857 | 0.4432 | 0.5024 | 0.4848 | 0.6958 | 0.5278 | 0.5123 |
|             | с           | 2.4781 | 0.2568 | 0.404  | 0.2487 | 0.8542 | 0.2547 | 0.2483 |
|             | а           | 1.4216 | 0.2675 | 0.4487 | 0.3998 | 0.5587 | 0.3325 | 0.3017 |
| 120         | b           | 1.9936 | 0.4325 | 0.4757 | 0.4365 | 0.6684 | 0.5187 | 0.4915 |
|             | с           | 2.4179 | 0.1745 | 0.3998 | 0.1587 | 0.8083 | 0.2147 | 0.203  |
|             | а           | 1.6254 | 0.2287 | 0.4121 | 0.3357 | 0.5587 | 0.2854 | 0.2455 |
| 140         | b           | 2.0147 | 0.3178 | 0.4128 | 0.3024 | 0.6287 | 0.3784 | 0.3563 |
|             | с           | 2.4587 | 0.1254 | 0.3856 | 0.1451 | 0.7245 | 0.1957 | 0.1841 |
|             | а           | 1.7235 | 0.2287 | 0.4018 | 0.3354 | 0.5124 | 0.2821 | 0.2273 |

TABLE-4.2 Method of Moment for Estimating the PERT Distribution (a=2, b=2.5 and c=3)



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue IX Sep 2021- Available at www.ijraset.com

| 160 | b | 2.1021 | 0.1124 | 0.3958 | 0.2958 | 0.5247 | 0.2958 | 0.2278 |
|-----|---|--------|--------|--------|--------|--------|--------|--------|
|     | С | 2.6578 | 0.1769 | 0.3364 | 0.1352 | 0.7154 | 0.1951 | 0.1922 |
|     | а | 1.7965 | 0.1387 | 0.3935 | 0.3232 | 0.4054 | 0.2487 | 0.2338 |
| 180 | b | 2.1471 | 0.1287 | 0.3836 | 0.2641 | 0.5065 | 0.2547 | 0.2399 |
|     | с | 2.7484 | 0.1636 | 0.3254 | 0.1547 | 0.6254 | 0.1887 | 0.1416 |
|     | a | 1.8045 | 0.1203 | 0.2741 | 0.2268 | 0.3698 | 0.2354 | 0.2094 |
| 200 | b | 2.2968 | 0.1198 | 0.3134 | 0.1874 | 0.4787 | 0.2487 | 0.1802 |
|     | с | 2.7689 | 0.1588 | 0.3009 | 0.1287 | 0.5247 | 0.1783 | 0.1182 |

### • Observations

> Average Estimate (AE) of PERT parameters by MLE are increased when sample size is increased.

Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) by MLE is decreased when sample size is increased.

Method of Moments (MoM) for estimating the PERT (a,b,c) Newton-Raphson simulation for a three parameter combinations and the process is repeated 10,000 times for different sample sizes n=20(20)200 are considered. The MoMs and their Average Estimate (AE), Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) of the parameters are unknown population parameters of PERT distribution. Population parameters a=3, b=4 and c=5 in Table 4.3.

| Sample size | Para meters | AE      | VAR    | SD     | MAD     | MSE     | RAB    | RE     |
|-------------|-------------|---------|--------|--------|---------|---------|--------|--------|
|             | a           | 1.3568  | 0.6024 | 0.7635 | 0.9998  | 1.4457  | 0.9984 | 0.9978 |
| 20          | b           | 1.4758  | 0.3754 | 0.6288 | 0.9452  | 1.3982  | 0.9451 | 0.9532 |
|             | с           | 2.5684  | 0.5964 | 0.7621 | 0.9378  | 1.3378  | 0.9627 | 0.9598 |
|             | а           | 1.3879  | 0.4754 | 0.6921 | 0.9753  | 1.3956  | 0.9458 | 0.9365 |
| 40          | b           | 1.50247 | 0.2351 | 0.4822 | 0.9398  | 1.2521  | 0.9358 | 0.9289 |
|             | с           | 2.6587  | 0.4154 | 0.6348 | 0.9287  | 1.2182  | 0.9583 | 0.9408 |
|             | а           | 1.9015  | 0.4578 | 0.6692 | 0.9687  | 1.1578  | 0.9152 | 0.9056 |
| 60          | b           | 1.9682  | 0.2747 | 0.5127 | 0.9281  | 1.1286  | 0.9287 | 0.9158 |
|             | с           | 2.7548  | 0.2012 | 0.4537 | 0.8787  | 1.1175  | 0.9466 | 0.9358 |
|             | а           | 2.3876  | 0.2966 | 0.5521 | 0.8987  | 1.2432  | 0.9118 | 0.9006 |
| 80          | b           | 2.4965  | 0.1582 | 0.3952 | 0.9077  | 1.1589  | 0.9158 | 0.9088 |
|             | с           | 2.8875  | 0.2147 | 0.4533 | 0.8547  | 1.1006  | 0.9337 | 0.9283 |
|             | а           | 2.4754  | 0.1257 | 0.3662 | 0.8721  | 1.1985  | 0.9006 | 0.8998 |
| 100         | b           | 2.5164  | 0.1154 | 0.3391 | 0.8964  | 1.1268  | 0.9058 | 0.8997 |
|             | с           | 3.5472  | 0.1132 | 0.3295 | 0.8174  | 1.0065  | 0.9221 | 0.9118 |
|             | а           | 2.5877  | 0.1178 | 0.3463 | 0.8521  | 1.1584  | 0.8933 | 0.8457 |
| 120         | b           | 2.6874  | 0.1025 | 0.3194 | 0.8732  | 1.1157  | 0.8965 | 0.8547 |
|             | с           | 3.8733  | 0.1097 | 0.3241 | 0.7985  | 0.9987  | 0.9157 | 0.9064 |
|             | а           | 2.7015  | 0.1054 | 0.3138 | 0.8154  | 1.1068  | 0.8725 | 0.8257 |
| 140         | b           | 2.7845  | 0.1009 | 0.3126 | 0.8421  | 0.9658  | 0.8799 | 0.8331 |
|             | с           | 4.0157  | 0.0954 | 0.2993 | 0.7732  | 0.92543 | 0.9087 | 0.8959 |
|             | a           | 2.79856 | 0.1124 | 0.3228 | 0.7938  | 0.9932  | 0.8598 | 0.8165 |
| 160         | b           | 2.8741  | 0.0958 | 0.3102 | 0.8365  | 0.9465  | 0.8566 | 0.8289 |
|             | с           | 4.2245  | 0.0942 | 0.3044 | 0.7521  | 0.8098  | 0.8354 | 0.8154 |
|             |             | 0.0541  | 0.1000 | 0.0100 | 0.770.4 | 0.0507  | 0.0070 | 0.7022 |

TABLE-4.3 ethod of Moment for Estimating the PERT Distribution (a-3, b-4) and c-3



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue IX Sep 2021- Available at www.ijraset.com

| 180 | b | 3.5413 | 0.0945 | 0.3012 | 0.8164 | 0.9087 | 0.8165 | 0.8007 |
|-----|---|--------|--------|--------|--------|--------|--------|--------|
|     | с | 4.3115 | 0.0931 | 0.3011 | 0.7468 | 0.7985 | 0.8057 | 0.8009 |
|     | а | 2.8965 | 0.0928 | 0.3087 | 0.7158 | 0.8547 | 0.7998 | 0.7542 |
| 200 | b | 3.6874 | 0.0929 | 0.2994 | 0.7584 | 0.8356 | 0.6875 | 0.6458 |
|     | с | 4.5687 | 0.0914 | 0.2984 | 0.6952 | 0.7721 | 0.7653 | 0.7054 |

• Observations

> Average Estimate (AE) of PERT parameters of estimated a, b, c by MLE are increased when sample size is increased.

Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) by MLE is decreased when sample size is increased.

We calculate the Method of Moments (MoM) for estimating the PERT ( $\alpha$ ,  $\beta$ ). Newton-Raphson iterative procedure for a two parameter combinations and the process is repeated 10,000 times for different sample sizes n = 20(20)200 are considered. The MoMs and their Average Estimate (AE), Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) of the parameters are unknown population parameters of PERT distribution. Population parameters  $\alpha = 3.5$  and  $\beta = 2.5$  in Table 4.4.

|                |                |        |        | U      |        | •      | /      |        |
|----------------|----------------|--------|--------|--------|--------|--------|--------|--------|
| Sample<br>size | Para<br>meters | AE     | VAR    | SD     | MAD    | MSE    | RAB    | RE     |
|                | α              | 1.5965 | 0.9969 | 0.9972 | 0.9458 | 1.9989 | 0.9999 | 0.8998 |
| 20             | β              | 1.4469 | 0.9965 | 0.9956 | 0.9268 | 1.9968 | 0.9986 | 0.8759 |
|                | α              | 1.6582 | 0.9921 | 0.9952 | 0.9169 | 1.9756 | 0.9965 | 0.8685 |
| 40             | β              | 1.5248 | 0.9154 | 0.9823 | 0.8965 | 1.9698 | 0.9954 | 0.8532 |
|                | α              | 1.7156 | 0.9025 | 0.9753 | 0.8865 | 1.9154 | 0.9923 | 0.8456 |
| 60             | β              | 1.6052 | 0.8956 | 0.9523 | 0.8547 | 1.8964 | 0.9897 | 0.8532 |
|                | α              | 1.8356 | 0.8754 | 0.9326 | 0.8469 | 1.8998 | 0.9752 | 0.8365 |
| 80             | β              | 1.6125 | 0.8721 | 0.9165 | 0.8421 | 1.8863 | 0.9568 | 0.8169 |
|                | α              | 1.8465 | 0.8598 | 0.9026 | 0.7965 | 1.8546 | 0.9468 | 0.7986 |
| 100            | β              | 1.6358 | 0.8322 | 0.8973 | 0.7524 | 1.8769 | 0.9132 | 0.7854 |
|                | α              | 1.9865 | 0.8169 | 0.8688 | 0.7436 | 1.8326 | 0.9056 | 0.7798 |
| 120            | β              | 1.6698 | 0.7963 | 0.8546 | 0.7165 | 1.8635 | 0.8965 | 0.7684 |
|                | α              | 1.9966 | 0.7465 | 0.8324 | 0.7098 | 1.7965 | 0.8936 | 0.6998 |
| 140            | β              | 1.7098 | 0.7398 | 0.8147 | 0.6987 | 1.7532 | 0.8732 | 0.6854 |
|                | α              | 2.1032 | 0.7169 | 0.7995 | 0.6856 | 1.7436 | 0.8569 | 0.6598 |
| 160            | β              | 1.8562 | 0.6958 | 0.7854 | 0.6784 | 1.7164 | 0.8469 | 0.6459 |
|                | α              | 2.3698 | 0.6898 | 0.7098 | 0.6654 | 1.6953 | 0.8299 | 0.6398 |
| 180            | β              | 1.9965 | 0.6721 | 0.6954 | 0.6438 | 1.6623 | 0.8132 | 0.6275 |
|                | α              | 2.6831 | 0.6588 | 0.6654 | 0.6198 | 1.6125 | 0.7986 | 0.6184 |
| 200            | β              | 2.1965 | 0.6487 | 0.6469 | 0.5968 | 1.5986 | 0.7211 | 0.6098 |

TABLE-4.4 Method of Moments for Estimating the PERT Distributions ( $\alpha = 3$ ,  $\beta = 2.5$ )

• Observations

Average Estimate (AE) of PERT parameters of estimated  $\alpha$ ,  $\beta$  by MLE are increased when sample size is increased.

Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) by MLE is decreased when sample size is increased.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 9 Issue IX Sep 2021- Available at www.ijraset.com

We calculate the Method of Moments (MoM) method for estimating the PERT( $\alpha$ ,  $\beta$ ) Newton-Raphson simulation procedure for a two parameter combinations and the process is repeated 10,000 times for different sample sizes n = 20(20)200 are taken. The MoM s and their Average Estimate (AE), Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) of the parameters are unknown population parameters of PERT distribution. Population parameters  $\alpha = 4.5$  and  $\beta = 4$  in Table 4.5.

| meenoe         | e of mioniem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                       | ang are i Bi                                                                                                                                                                                                                                                                                                                                                                                                                                | CI Dibuitout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , p - i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Para<br>meters | AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VAR                                                                                                                                                                                                                                                                                                                                   | SD                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| α              | 2.3345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9981                                                                                                                                                                                                                                                                                                                                | 0.9977                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 2.3243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9841                                                                                                                                                                                                                                                                                                                                | 0.9854                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| α              | 2.4254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9654                                                                                                                                                                                                                                                                                                                                | 0.9735                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 2.4032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9498                                                                                                                                                                                                                                                                                                                                | 0.9441                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| α              | 2.5489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9254                                                                                                                                                                                                                                                                                                                                | 0.9365                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 2.4583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9154                                                                                                                                                                                                                                                                                                                                | 0.9154                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| α              | 2.6985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8904                                                                                                                                                                                                                                                                                                                                | 0.8856                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 2.5621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8762                                                                                                                                                                                                                                                                                                                                | 0.8756                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| α              | 2.7698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8868                                                                                                                                                                                                                                                                                                                                | 0.8632                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 2.647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8854                                                                                                                                                                                                                                                                                                                                | 0.8321                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| α              | 2.8647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8697                                                                                                                                                                                                                                                                                                                                | 0.8564                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 2.7654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8354                                                                                                                                                                                                                                                                                                                                | 0.8187                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| α              | 3.1658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8451                                                                                                                                                                                                                                                                                                                                | 0.7954                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 2.8791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7264                                                                                                                                                                                                                                                                                                                                | 0.7754                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| α              | 3.5517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8252                                                                                                                                                                                                                                                                                                                                | 0.7548                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 3.1478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7124                                                                                                                                                                                                                                                                                                                                | 0.7321                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| α              | 3.9648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7927                                                                                                                                                                                                                                                                                                                                | 0.7465                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 3.4873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7064                                                                                                                                                                                                                                                                                                                                | 0.7258                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| α              | 4.2956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7542                                                                                                                                                                                                                                                                                                                                | 0.7154                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β              | 3.7658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6857                                                                                                                                                                                                                                                                                                                                | 0.6987                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Para<br>meters<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\alpha$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\beta$<br>$\beta$ | Para<br>metersAE $\alpha$ 2.3345 $\beta$ 2.3243 $\alpha$ 2.4254 $\beta$ 2.4032 $\alpha$ 2.5489 $\beta$ 2.4583 $\alpha$ 2.6985 $\beta$ 2.5621 $\alpha$ 2.7698 $\beta$ 2.647 $\alpha$ 2.8647 $\beta$ 2.7654 $\alpha$ 3.1658 $\beta$ 2.8791 $\alpha$ 3.5517 $\beta$ 3.1478 $\alpha$ 3.9648 $\beta$ 3.4873 $\alpha$ 4.2956 $\beta$ 3.7658 | Para<br>metersAEVAR $\alpha$ 2.33450.9981 $\beta$ 2.32430.9841 $\alpha$ 2.42540.9654 $\beta$ 2.40320.9498 $\alpha$ 2.54890.9254 $\beta$ 2.45830.9154 $\alpha$ 2.69850.8904 $\beta$ 2.56210.8762 $\alpha$ 2.76980.8868 $\beta$ 2.6470.8854 $\alpha$ 2.86470.8854 $\alpha$ 3.16580.8451 $\beta$ 2.87910.7264 $\alpha$ 3.55170.8252 $\beta$ 3.14780.7124 $\alpha$ 3.96480.7927 $\beta$ 3.48730.7064 $\alpha$ 4.29560.7542 $\beta$ 3.76580.6857 | Para<br>metersAEVARSD $\alpha$ 2.33450.99810.9977 $\beta$ 2.32430.98410.9854 $\alpha$ 2.42540.96540.9735 $\beta$ 2.40320.94980.9441 $\alpha$ 2.54890.92540.9365 $\beta$ 2.45830.91540.9154 $\alpha$ 2.69850.89040.8856 $\beta$ 2.56210.87620.8756 $\alpha$ 2.76980.88680.8632 $\beta$ 2.6470.88540.8321 $\alpha$ 2.86470.83540.8187 $\alpha$ 3.16580.84510.7954 $\beta$ 2.87910.72640.7754 $\alpha$ 3.55170.82520.7548 $\beta$ 3.14780.71240.7321 $\alpha$ 3.96480.79270.7465 $\beta$ 3.48730.70640.7258 $\alpha$ 4.29560.75420.7154 $\beta$ 3.76580.68570.6987 | Para<br>metersAEVARSDMAD $\alpha$ 2.33450.99810.99770.8965 $\beta$ 2.32430.98410.98540.84 $\alpha$ 2.42540.96540.97350.8824 $\beta$ 2.40320.94980.94410.7798 $\alpha$ 2.54890.92540.93650.8564 $\beta$ 2.45830.91540.91540.7584 $\alpha$ 2.69850.89040.88560.8369 $\beta$ 2.56210.87620.87560.7432 $\alpha$ 2.76980.88680.86320.8166 $\beta$ 2.6470.88540.83210.7285 $\alpha$ 2.86470.86970.85640.7956 $\beta$ 2.76540.83540.81870.7054 $\alpha$ 3.16580.84510.79540.7435 $\alpha$ 3.55170.82520.75480.7435 $\beta$ 3.14780.71240.73210.6887 $\alpha$ 3.96480.79270.74650.7288 $\beta$ 3.48730.70640.72580.6754 $\alpha$ 4.29560.75420.71540.7054 $\alpha$ 4.29560.75420.71540.7054 | Para<br>metersAEVARSDMADMSE $\alpha$ 2.33450.99810.99770.89651.9987 $\beta$ 2.32430.98410.98540.841.8864 $\alpha$ 2.42540.96540.97350.88241.9752 $\beta$ 2.40320.94980.94410.77981.8765 $\alpha$ 2.54890.92540.93650.85641.9546 $\beta$ 2.45830.91540.91540.75841.8547 $\alpha$ 2.69850.89040.88560.83691.9365 $\beta$ 2.56210.87620.87560.74321.8487 $\alpha$ 2.76980.88680.86320.81661.9147 $\beta$ 2.6470.88540.83210.72851.8198 $\alpha$ 2.86470.86970.85640.79561.8989 $\beta$ 2.76540.83540.81870.70541.7954 $\alpha$ 3.16580.84510.79540.75641.8836 $\beta$ 2.87910.72640.77540.69871.7655 $\alpha$ 3.55170.82520.75480.74351.8324 $\beta$ 3.14780.71240.73210.68871.7654 $\alpha$ 4.29560.79270.74650.72881.7965 $\beta$ 3.48730.70640.72580.67541.7214 $\alpha$ 4.29560.75420.71540.70541.7436 $\beta$ 3.76580.68570.69870.64871.6987 | Para<br>metersAEVARSDMADMSERAB $\alpha$ 2.33450.99810.99770.89651.99870.9988 $\beta$ 2.32430.98410.98540.841.88640.9854 $\alpha$ 2.42540.96540.97350.88241.97520.9754 $\beta$ 2.40320.94980.94410.77981.87650.9501 $\alpha$ 2.54890.92540.93650.85641.95460.9473 $\beta$ 2.45330.91540.91540.75841.85470.9365 $\alpha$ 2.69850.89040.88560.83691.93650.8954 $\beta$ 2.56210.87620.87560.74321.84870.8801 $\alpha$ 2.76980.88680.86320.81661.91470.8779 $\beta$ 2.6470.88540.83210.72851.81980.8564 $\alpha$ 2.86470.86970.85640.79561.89890.8701 $\beta$ 2.6470.82520.75480.75641.88360.8532 $\alpha$ 3.16580.84510.79540.75641.88360.8532 $\beta$ 2.87910.72640.77540.69871.78650.7765 $\alpha$ 3.55170.82520.75480.72581.83240.8432 $\beta$ 3.14780.71240.73210.68871.76540.7554 $\alpha$ 3.96480.79270.74650.72881.79650.8177 $\beta$ 3.48730.7064 |

TABLE 4.5 Method of Moments for Estimating the PERT Distribution ( $\alpha = 4.5$ ,  $\beta = 4$ )

• Observations

Average Estimate (AE) of PERT parameters of estimated  $\alpha$ ,  $\beta$  by MLE are increased when sample size is increased.

Variance (VAR), Standard Deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Absolute Bias (RAB), Relative Error (RE) by MLE is decreased when sample size is increased.

## V. CONCLUSIONS

- Method of Moments is the better one for estimating the parameters of the PERT distribution; Since Sample size increases Variance (VAR), Standard deviation (SD), Mean absolute deviation (MAD), Mean Square Error (MSE), Relative Absolute Bias (RAB) and Relative Error (RE) for both parameters are decreases.
- 2) The Method of Moments has the smallest Variance (VAR), Standard deviation (SD), Mean absolute deviation (MAD), Mean Square Error (MSE), Relative Absolute Bias (RAB) and Relative Error (RE) for both parameters, proving to be the efficient method.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue IX Sep 2021- Available at www.ijraset.com

- A. Observations For The Simulation Result
- 1) The Average estimate (AE), Variance (VAR), Standard deviation (SD), Mean Square Error (MSE), Relative Absolute Error (RAB), Relative Error (RE) of the estimators are dependent on the sample sizes.
- 2) The Average estimate (AE), Variance (VAR), Standard deviation (SD), Mean Square Error (MSE), Relative Absolute Error (RAB), Relative Error(RE) of the estimators are independent on the population parameter values.
- 3) The Average Estimate (AE) of Method of Moments a, b, c estimators is increased when sample size increased.
- 4) The Average Estimate (AE) of Method of Moments ( $\hat{\alpha}$ ) and ( $\hat{\beta}$ ) estimators is increased when sample size increased.
- 5) The Average estimate (AE), Variance (VAR), Standard deviation (SD), Mean Square Error (MSE), Relative Absolute Error (RAB), Relative Error(RE) of Method of Moments the estimators a, b, c are decreased when sample size are increased.
- 6) The Variance (VAR), Standard deviation (SD), Mean Absolute Deviation (MAD), Mean Square Error (MSE), Relative Absolute Bias (RAB), Relative Error (RE) of Method of moments ( $\hat{\alpha}$ ) and ( $\hat{\beta}$ ) estimators are decreased when sample size increased.

#### REFERENCES

- [1] Alexander Lück& Verena Wolf(2016), Generalized method of moments for estimating parameters of stochastic reaction networks, BMC System Biology 10(98), pp:1-2.
- Boag J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society, Series B, 11, PP: 15–53.
- [3] Cheng, R.C.H., Amin, N.A.K., (1983). Estimating parameters in continuous univariate distributions with a shifted origin. Journal of Royal Statistical Society. Series: B 45, pp: 394–403.
- [4] Coher?, A. C. (1951). 'Estimating Parameters of Logarithmic-Normal Distributions by Maximum Likelihood,' J. her. Statist.
- [5] Hossain, S. A. and Ahsanullah, M., 2010. "On Generalized Exponential Distributions." Advances and Applications in Statistical Sciences. Vol. 4, Issue 1, 1-22.
- [6] Joseph J.Moder, E.G.Rodgers. Judgment Estimates of the Moments of PERT Type Distributions. Management Science 15, No. 2, B76-B83 (1968).
- [7] Pearson, K. 1894. Contributions to the mathematical theory of evolution. II. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society of London, Series A, 185, pages unknown. (republished in Karl Pearson's Early Statistical Papers. Cambridge Univ. Press. 1948. pp. 1-41).
- [8] Pearson, K. 1895. Contributions to the mathematical theory of evolution. II. Skew variations in homogeneous material. Philosophical Transactions of the Royal Society of London, Series A, 186, 343-414. (republished in Karl Pearson's Early Statistical Papers. Cambridge Univ. Press. 1948. pp. 41-112).
- [9] Kendall, M.G.; Stuart, A. 1969. The advanced theory of statistics, Vol. 1. 3rd ed. New York: Hafner Publishing Company. 87 p.
- [10] Keeefr.D.L. Verdini.W.A. "Better Estimation of PEPT Activity Time Parameters" Management science, vol. 39, pp. 1086-1091, September 1993.
- [11] Kamburowski, J. (1997). New validations of PERT times. Omega, The International Journal of Management Science, 25(3), 323–328.
- [12] Rameshwar D. Gupta, Debasis Kundu (2000), Generalized Exponential Distribution: Different Method of Estimations, J. Statist. Comput. Simul., 2000, Vol. 00, Pp. 1-22.
- [13] Hansen LP. Large sample properties of generalized method of moments estimators. Econometrica. 1982:1029-54.
- [14] Syed Afzal Hossain (2018), Estimating the Parameters of a Generalized Exponential Distribution, Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 537-553.
- [15] Smith, R.L., Naylor, J.C. (1987): A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Journal of Applied Statistics, 36, pp: 358–369.











45.98



IMPACT FACTOR: 7.129







INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24\*7 Support on Whatsapp)