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Abstract— The concept of stereoscopy has existed for a long time. But the breakthrough from conventional 2D broadcasting 
to real-time 3D broadcasting is still pending. However, in recent years, there has been rapid progress in the field’s image 
capture, coding and display which brings the realm of 3D closer to reality than ever before. The survey investigates the 
existing 2D to 3D conversion algorithms developed in the past years by various computer vision research communities across 
the world. Each algorithm has its own strengths and weaknesses. Most conversion algorithms make use of certain depth cues 
to generate depth maps. Among 2D-to-3D image conversion methods, those involving human operators have been most 
successful but also time-consuming and costly. Fully-automatic methods typically make strong assumptions about the 3D 
scene. Although such methods may work well in some cases, in general it is very difficult to construct a deterministic scene 
model that covers all possible background and foreground combinations. In practice, such methods have not achieved the 
same level of quality as the semi-automatic methods.
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I. INTRODUCTION

Stereoscopy, also called stereoscopic or 3D imaging is a 
technique for creating or enhancing the illusion of depth in an 
image by means of stereopsis for binocular vision. Most 
stereoscopic methods present two set images separately to the 
left and right eye of the viewer. These two-dimensional 
images are then combined in the brain to give the perception 
of 3D depth. This technique is distinguished from 3D displays 
that display an image in three full dimensions, allowing the 
observer to increase information about the 3-dimensional 
objects being displayed by head and eye movements.

Three-dimensional television (3D-TV) is nowadays often 
seen as the next major milestone in the ultimate visual 
experience of media. Although the concept of stereoscopy has 
existed for a long time, the breakthrough from conventional 
2D broadcasting to real-time 3D broadcasting is still pending. 
However, in recent years, there has been rapid progress in the 
fields image capture, coding and display, which brings the 
realm of 3D closer to reality than ever before.

The world of 3D incorporates the third dimension of depth, 
which can be perceived by the human vision in the form of 
binocular disparity. Human eyes are located at slightly 
different positions, and these perceive different views of the 
real world. The brain is then able to reconstruct the depth 
information from these different views. A 3D display takes 
advantage of this phenomenon, creating two slightly different 
images of every scene and then presenting them to the 
individual eyes. With an appropriate disparity and calibration 
of parameters, a correct 3D perception can be realized.

An important step in any 3D system is the 3D content 
generation. Several special cameras have been designed to 
generate 3D model directly. For example, a stereoscopic dual-
camera makes use of a co-planar configuration of two 
separate, monoscopic cameras, each capturing one eye's view, 
and depth information is computed using binocular disparity. 
A depth-range camera is another example. It is a conventional 
video camera enhanced with an add-on laser element, which 
captures a normal two-dimensional RGB image and a 
corresponding depth map. A depth map is a 2D function that 
gives the depth of an object point as a function of the image 
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coordinates. Usually, it is represented as a grey level image 
with the intensity of each pixel registering its depth. The laser 
element emits a light wall towards the real world scene, which 
hits the objects in the scene and reflected back. This is 
subsequently registered and used for the construction of a 
depth map.

II. STATE OF THE ART

Two approaches to 2D to 3D conversion can be loosely 
defined: quality semiautomatic conversion for cinema and 
high quality 3DTV, and low-quality automatic conversion for 
cheap 3DTV, VOD and similar applications. In semiautomatic 
conversion a skilled operator assigns depth to various parts of 
an image or video. Based on this sparse depth assignment, a 
computer algorithm estimates dense depth over the entire 
image or video sequence. In the case of automatic methods, no 
operator intervention is needed and a computer algorithm 
automatically estimates the depth for a single image or video. 
Automatic methods estimates shape from shading, structure 
from motion or depth from defocus. Electronics manufacturers 
use stronger assumptions to develop real-time 2D-to-3D 
converters. Such methods may work well in specific 
scenarios. But generally it is very difficult to construct 
heuristic assumptions that cover all possible background and 
foreground combinations.

In order to reduce operator involvement in the 
semiautomatic conversion process and therefore, lower the 
cost while speeding up the conversion, research effort has 
recently focused on the most labour-intensive steps of the 
manual involvement, namely spatial depth assignment. 
Guttmann et al. [4] have proposed a dense depth recovery via 
diffusion from sparse depth assigned by the operator. The 
focus of the method proposed by Agnot et al. [7] is the 
application of cross-bilateral filtering to an initial depth map.
The authors propose to use a library of initial depth maps from 
which an operator can choose one that best corresponds to the 
image being converted. They also suggest estimation of the 
initial depth map based on image blur but show only one very 
simple example; this initialization is unlikely to work well in 
more complex cases. Phan et al. [12] propose a simplified and 
more efficient version of the Guttmann et al. [4] method using 
scale-space random walks that they solve with the help of 
graph cuts. Liao et al.[9] further simplify operator 

involvement by first computing optical flow, then applying 
structure-from-motion estimation and finally extracting 
moving object boundaries. The role of an operator is to correct 
errors in the automatically computed depth of moving objects 
and assign depth in undefined areas.

The problem of depth estimation from a single 2D image,
which is the main step in 2D-to-3D conversion, can be
formulated in various ways, for example as a shape-from
shading problem [16]. However, this problem is severely
under-constrained; quality depth estimates can be found only
for special cases. Other methods, often called multi-view
stereo, attempt to recover depth by estimating scene geometry
from multiple images not taken simultaneously. For example, 
a moving camera permits structure-from-motion estimation 
[18] while a fixed camera with varying focal length permits 
depth from-defocus estimation [19]. Both are examples of the 
use of multiple images of the same scene captured at different
times or under different exposure conditions. Although such 
methods are similar in spirit to the methods proposed here, the 
main difference is that while these methods use images known 
to depict the same scene as the query image, the proposed 
method uses all images available in a large repository and 
automatically select suitable ones for depth recovery.

Recently, machine-learning-inspired techniques employing
image parsing have been used to estimate the depth map of a 
single monocular image [5], [3]. Such methods have the
potential to automatically generate depth maps, but currently
work only on few types of images using carefully-selected 
training data. The data-driven approaches to 2D-to-3D 
conversion is inspired by the recent trend to use large image 
databases for various computer vision tasks, such as object 
recognition [14] and image saliency detection [15].

A detailed study of few 2D to 3D conversion methods are 
given below:

A. A Semi-Automatic 2D to 3D Image Conversion Using 
Scale-Space Random Walks And A Graph Cuts Based 
Depth Prior

Here, a semi-automated method is used for converting 
conventional 2D images into stereoscopic 3D. User-defined 
strokes corresponding to a rough estimate of the depth values 
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in the scene are defined for the image of interest. With these, 
system determines the depth values for the rest of the image, 
producing a depth map that can be used to create stereoscopic 
3D image pairs. The work is based on a similar scheme, using 
the Random Walks segmentation paradigm. However, the 
related work is quite complex, with many processing steps 
required to produce the final stereoscopic image pair. 
Combined with its evident shortcomings, but noting the 
merits, a system employing Random Walks is proposed, while 
incorporating information from the popular Graph Cuts 
segmentation paradigm. Thus, a final cohesive depth map is 
produced, combining the merits of both. The results show that 
the project produces good quality stereoscopic image pairs, 
while using a much more simplified method in comparison to 
the related work.

Fig. 1 The Cabot Tower example along with associated 
labelling and depth maps (a) Labelled Image (b) Graph Cuts 

(c) Random Walks.

Generating depth maps in a segmentation-based framework 
is an intuitive process. Rather than just considering each label 
as a separate object, here each label is considered as a separate 
depth, and can ultimately be seen as a case of multi-label 
segmentation. The user merely has to mark each object and 
specify their relative depths. This is sufficient, as noted, the 
exact depth values do not have to be known. This is a two 
stage process using the smoothing properties of Random 
Walks and the hard segmentation returned by Graph Cuts. 
Random Walks is the solution to a linear system and has 
problems preserving strong edges, but Graph Cuts does this 
quite well. However, the hard segmentation with Graph Cuts 
does not respect smooth gradients or fine detail. By combining 
the two, we can retain strong object boundaries while also 

allowing for smooth gradients. There has already been work 
that has merged the merits of the two in a unified 
segmentation framework. An initial depth map using Graph 
Cuts is generated first with user-defined depth strokes, in 
order to generate a depth prior. The depth prior and the same 
depth strokes are integrated into Random Walks as an 
additional feature when determining the edge weights. The 
merits of Random Walks are combined with Graph Cuts, in 
order to produce an augmented, good quality depth map.

1) Advantages: The results show that this method produces 
good quality stereoscopic image pairs. A much more 
simplified method is used in comparison to the related work.

2) Disadvantages: Human interactions are required. Also 
2D to 3D video conversion is not possible.

B. Auto-Directed Video Stabilization with Robust L1 Optimal 
Camera Paths

A novel algorithm for automatically applying constrainable, 
an L1-optimal camera path to generate stabilized videos by 
removing undesired motions is presented here. The goal is to 
compute camera paths that are composed of constant, linear 
and parabolic segments mimicking the camera motions 
employed by professional cinematographers. To this end, the 
algorithm is based on a linear programming framework to 
minimize the first, second, and third derivatives of the 
resulting camera path. This method allows for video 
stabilization beyond the conventional filtering of camera paths 
that only suppresses high frequency jitter. Additional 
constraints are incorporated on the path of the camera directly 
in the algorithm, allowing for stabilized and retargeted videos. 
The approach presented here accomplishes this without the 
need of user interaction or costly 3D reconstruction of the 
scene, and works as a post-process for videos from any 
camera or from an online source. This technique may not be 
able to stabilize all videos. Example, Low feature count, 
excessive blur during extremely fast motions Lack of rigid 
objects in the scene might make camera path estimation 
unreliable. The use of cropping discards information, 
something a viewer might dislike.
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This algorithm works as a post process and can be applied 
to videos from any camera or from an online source without 
any knowledge of the capturing device or the scene. A post-
process video stabilization consists of the following three 
main steps: (1) Estimating the original camera path, (2) 
Estimating a new smooth camera path, and (3) Synthesizing 
the stabilized video using the estimated smooth camera path. 
The key contribution of a method is a novel algorithm to 
compute the optimal steady camera path. A crop window is 
moved of fixed aspect ratio along this path; a path optimized 
to include salient points and regions, while minimizing an L1-
smoothness constraint based on cinematography principles. 
This technique finds optimal partitions of smooth paths by 
breaking the path into segments of constant, linear, or 
parabolic motion. It avoids the superposition of these three 
types, resulting in, for instance, a path that is truly static 
within a constant segment instead of having small residual 
motions. Furthermore, it removes low-frequency bounces, e.g. 
those originating from a person walking with a camera. The 
optimization is poses as a Linear Program (LP) subject to 
various constraints, such as inclusion of the crop window 
within the frame rectangle at all times. Any additional motion 
inpainting is not performed.

Fig. 2 Example from YouTube “Fan-Cam” video, Top row: 
Stabilized rebottom row: Original with optimal crop window.

1) Advantages: The video stabilization beyond the 
conventional filtering of camera paths that only suppresses 
high frequency jitter is used. User interaction or costly 3D 

reconstruction of the scene is not required. It works as a 
postprocess for videos from any camera or from an online 
source.

2) Disadvantages: This technique may not be able to 
stabilize all videos. Lack of rigid objects in the scene might 
make camera path estimation unreliable.The use of cropping 
discards information, something a viewer might dislike.

C. Depth Extraction from Video Using Non-parametric 
Sampling

This method describes a technique that automatically 
generates plausible depth maps from videos using non-
parametric depth sampling. This technique is demonstrated in 
cases where past methods fail (nontranslating cameras and 
dynamic scenes). This technique is applicable to single images 
as well as videos. For videos, local motion cues are used to 
improve the inferred depth maps, while optical flow is used to 
ensure temporal depth consistency. For training and 
evaluation, a Kinect-based system is used to collect a large 
dataset containing stereoscopic videos with known depths. 

From a given input image, find matching candidates in the 
database, and warp the candidates to match the structure of the 
input image. Then use a global optimization procedure to 
interpolate the warped candidates producing per-pixel depth 
estimates for the input image. With temporal information (e.g. 
extracted from a video), this algorithm can achieve more 
accurate, temporally coherent depth. The depth estimation 
technique used in this method outperforms the state-of-the-art 
on benchmark databases. This technique can be used to 
automatically convert a monoscopic video into stereo for 3D 
visualization, and this is demonstrate through a variety of 
visually pleasing results for indoor and outdoor scenes, 
including results from the feature film Charade.

1) Advantages: Automatically convert a monoscopic video 
into stereo for 3D visualization. Nontranslating cameras and 
dynamic scenes cases can be demonstrated using this. Also, 
this method is applicable to single images as well as videos.

2) Disadvantages: In some cases, motion segmentation 
misses or falsely identifies moving pixels. This can result in 
inaccurate depth and 3D estimation. The algorithm also 
assumes that moving objects contact the ground, and thus may 
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fail for airborne objects. Due to the serial nature of this 
method is prone to propagating errors through the stages. For 
example, if an error is made during depth estimation, the 
result may be visually implausible.

D. Video Stereolization: Combining Motion Analysis with 
User Interaction

This method present a semi-automatic system that converts 
conventional videos into stereoscopic videos by combining 
motion analysis with user interaction, aiming to transfer as 
much as possible labeling work from the user to the computer. 
In addition to the widely-used structure from motion (SFM) 
techniques, two new methods are developed that analyze the 
optical flow to provide additional qualitative depth 
constraints. They remove the camera movement restriction 
imposed by SFM so that general motions can be used in scene 
depth estimation – the central problem in mono-to-stereo 
conversion. With these algorithms, the user’s labelling task is 
significantly simplified. A quadratic programming approach is 
also developed to incorporate both quantitative depth and 
qualitative depth (such as these from user scribbling) to 
recover dense depth maps for all frames, from which 
stereoscopic view can be synthesized. The user study results 
show that this approach is more intuitive and less labour 
intensive, while producing 3D effect comparable to that from 
current interactive algorithms.

In the pre-processing step, the input image sequence is first 
passed through three individual automatic modules: structure-
from-motion (SFM) moving object segmentation (MOS), and 
perspective depth correction (PDC). The SFM algorithm is 
applied to the input image sequence with dominant rigidly 
moving objects to recover a sparse set of 3D points. The MOS 
module is used to automatically segment the foreground, it is 
particularly effective in a follow shot in which the foreground 
is relatively static and the background is rapidly changing. 
Finally, the PDC module inspects the size change of an 
object’s image to estimate relative depth changes between 
frames. After automatic processing, the users are presented 
with images showing area with known depth (from SFM and 
MOS). If there are still undefined regions, the users need to 
label them in some key frames by simple scribbling. The 
user’s input as well as all the automatically calculated depth 
cues will be integrated in a quadratic programming framework 

to generate dense depth maps for all frames. Finally the novel 
view is generated via shifting every pixel horizontally by a 
certain amount base on the depth maps, simulating the 
perspective from the other eye. Since in most of the cases, the 
baseline between the synthesized view and the input view is 
small, a simple technique is used to deal with the gaps in the 
synthesized view due to disocclusion. Fill the uncoloured 
region with neighbouring pixels of larger depth values.

1) Advantages: The major novelty of the framework lies in 
the utilization of motion prior analysis.User interface requires 
users to specify relative depth orders with the help of pre-
computed 3D visual cues, instead of labelling the depth value 
directly.

2) Disadvantages: The success of the automatic processing 
modules depends on the camera/object motion. If there is no 
feature to track, the resulting depth map will not be accurate.

E. 2D-to-3D Image Conversion by Learning Depth from 
Examples

Among 2D-to-3D image conversion methods, those 
involving human operators have been most successful but also 
time-consuming and costly. Automatic methods, that typically 
make use of a deterministic 3D scene model, have not yet 
achieved the same level of quality as they often rely on 
assumptions that are easily violated in practice. Here, radically 
different approach of “learning” the 3D scene structure is 
adopted. A simplified and computationally-efficient version of 
2D-to-3D image conversion algorithm is developed. From a 
given repository of 3D images, either as stereopairs or 
image+depth pairs, find k pairs whose photometric content 
most closely matches that of a 2D query to be converted. 
Then, fuse the k corresponding depth fields and align the 
fused depth with the 2D query. The simplified algorithm 
validated quantitatively on a Kinect-captured image+depth 
dataset against the Make3D algorithm. While far from perfect, 
the presented results demonstrate that online repositories of 
3D content can be used for effective 2Dto-3D image 
conversion.

This approach is built upon a key observation and an 
assumption. The key observation is that among millions of 
image+depth pairs available on-line, there likely exist many 
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pairs whose 3D content matches that of a 2D input query. The 
assumption is that two images that are photometrically similar 
are likely to have similar 3D structure depth. This is not 
unreasonable since photometric properties are often correlated 
with 3D content. For example, edges in a depth map almost 
always coincide with photometric edges.

The proposed algorithm compares favorably in terms of 
both estimated depth quality and computational complexity. 
Admittedly, the validation was limited to a database of indoor 
scenes on which Make3D was not trained. The generated 
anaglyph images produce a comfortable 3D perception but are 
not completely void of distortions.

1) Advantages: While far from perfect, the presented results 
demonstrate that online repositories of 3D content can be used 
for effective 2dto-3d image conversion. This method is 
favourable in terms of both estimated depth quality and 
computational complexity.

2) Disadvantages: Uses SIFT which bring additional 
computation complexity. The validation was limited to a 
database of indoor a scene on which make3d was not trained.
The generated anaglyph images produce a comfortable 3d 
perception but are not completely void of distortions.

F. Learning-Based, Automatic 2D-to-3D Image And Video 
Conversion

Among 2D-to-3D image conversion methods, those 
involving human operators have been most successful but also 
time-consuming and costly. Fully-automatic methods typically 
make strong assumptions about the 3D scene. Although such 
methods may work well in some cases, in general it is very 
difficult to construct a deterministic scene model that covers 
all possible background and foreground combinations. In 
practice, such methods have not achieved the same level of 
quality as the semi-automatic methods. Two types of methods 
are used in the project. The first one is based on learning a 
point mapping from local image/video attributes, such as 
color, spatial position, and motion at each pixel, to scene-
depth at that pixel using a regression type idea. 

The second one is based on globally estimating the entire 
depth map of a query image directly from a repository of 3D 
images which is a set of image + depth pairs using a nearest-

neighbor regression type idea.This approach is built upon a 
key observation and an assumption. The key observation is 
that among millions of 3D images available on-line, there 
likely exist many whose 3D content matches that of the 2D 
input query. The key assumption is that two 3D images whose 
left images are photometrically similar are likely to have 
similar depth fields.

Fig. 3 Anaglyph images generated using the ground-truth 
depth (a) and depths estimated by the proposed global method 

(b).

1) Advantages: The 2d-to-3d conversion based on learning 
a local point transformation has the undisputed advantage of 
computational efficiency. The point transformation can be 
learned off-line and applied basically in real time. The same 
transformation can be applied to images with potentially 
different global 3d scene structure. For global method millions 
of 3D images are available on-line. It requires less 
computation time only. Also, it has reduced complexity 
compared to the previous methods.

2) Disadvantage: Low resolution images give better 
output.

III. CONCLUSIONS

The survey investigates the existing 2D to 3D conversion 
algorithms developed in the past years by various computer 
vision research communities across the world. The results of 
some 2D to 3D conversion algorithms are 3D coordinates of a 
small set of points in the images. This group of algorithms is 
less suitable for the 3D television application. The depth cues 
based on multiple images yield in general more accurate 
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results, while the depth cues based on single still image are 
more versatile. A single solution to convert the entire class of 
2D images to 3D models does not exist. Combing depth cues 
enhances the accuracy of the results. It has been observed that 
machine learning is a new and promising research direction in 
2D to 3D conversion. It is also helpful to explore the 
alternatives than to confine ourselves only in the conventional 
methods based on depth maps.
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