

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 4 Issue: III Month of publication: March 2016
DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Volume 4 Issue III, March 2016 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering

Technology (IJRASET)

γ - Splitting Graphs

Selvam Avadayappan¹, M. Bhuvaneshwari², R. Iswarya³ ^{1,2,3}Research Department of Mathematics, VHNSN College(Autonomous), Virudhunagar-626001, India.

Abstract--Let G(V,E) be a graph. A dominating set is a subset S of V such that every vertex not in S is adjacent to at least one vertex in S. The cardinality of a minimum dominating set is called the domination number, $\gamma(G)$. A dominating set with γ vertices is called a γ -set. Let η denote the number of γ -sets in G. For a graph G, the splitting graph S(G), is obtained by adding a new vertex v' corresponding to each vertex v of G and joining v' to all vertices which are adjacent to v in G. Here we introduce a new type of graphs called minimum domination splitting graphs or simply γ -splitting graphs. Let G be a graph and let S_{15} , S_2 ,..., S_{η} be the γ -sets in G. The γ -splitting graph, $S_{\gamma}(G)$, of a graph G is the graph obtained from G by adding new vertices $w_{15}w_{25}$,..., w_{η} and joining w_i to each vertex in S_i where $1 \le i \le \eta$. In this paper, we establish some results on γ -splitting graphs. Keywords: Dominating set, domination number, splitting graph, γ -splitting graph.

AMS Subject Classification Code(2010): 05C(Primary)

I. INTRODUCTION

Throughout this paper, we consider only finite, simple, undirected graphs. For notations and terminology we follow [3]. Let G(V,E) be a graph of order n. We denote the *cycle* on n vertices by C_n , the *path* of n vertices by P_n , and the *complete graph* on n vertices by K_n . The *complete bipartite* graph is denoted by $K_{m,n}$. In a graph G, *degree* of a vertex v is denoted by d(v). If S is a subset of V, then $\langle S \rangle$ denotes the *vertex induced subgraph* of G induced by S. For any vertex $v \in V(G)$, the *open neighbourhood* N(v) of V(G) is the set of all vertices adjacent to v, that is, $N(v) = \{u \in V(G) / uv \in E(G)\}$, and the *closed neighbourhood* of v is defined by $N[v] = N(v) \cup \{v\}$. N^c(v) = V- N(v) is called the *neighbourhood complement*. For any set S, $N(S) = \bigcup N(v)$.

A *full vertex* of G is a vertex in G which is adjacent to all other vertices of G. A graph G is said to be *r-regular* if every vertex in G is of degree r. For any two integers k and d, $k \neq d$, a(k,d)- *biregular* graph is a graph in which every vertex is of degree either k or d. For any three integers x, a, and b, $x \neq a \neq b$, a (x,a,b)- *triregular* graph is a graph in which every vertex is of degree either x or a or b. For example, a (2,3)-biregular and a (1,2,6)- triregular graphs are shown in Figure 1.

Figure 1

The *distance* d(u,v) in G between two vertices u and v is the length of a shortest u-v path in G. The *eccentricity* e(u), of a vertex u is the distance of a farthest vertex from u, and *radius* rad(G) of G is the minimum eccentricity. The maximum distance between any two vertices in G is the *diameter* of G, denoted by diam(G), that is, diam(G) = $\max_{u,v \in V(G)} \{d(u,v)\}$. A vertex u with e(u) = rad(G) is

called a *central* vertex. A graph G for which rad(G) = diam(G) is called a *self-centered graph* of radius rad(G). Or equivalently, a graph is *self-centered* if all of its vertices are central vertices. For further basic definitions on distance in graphs one can refer [4]. Let $H_{n,n}$ denote the graph with vertex set { $v_1, v_2, ..., v_n$; $u_1, u_2, ..., u_n$ } and edge set { $v_{iuj} / 1 \le i \le n, n-i+1 \le j \le n$ }. The graph $B_{m,n}$ is the *bistar* obtained from the stars $K_{1,m}$ and $K_{1,n}$ by joining their central vertices by means of an edge. For example, the graph $H_{4,4}$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

and the bistar $B_{4,5}$ are shown in Figure 2.

Figure 2

The *join* $G \vee H$ of the graph G and H is the graph obtained from $G \bigcup H$ by joining every vertex of G to each vertex of H by means of an edge. The graph $W_n = C_{n-1} \vee K_1$ is called the *wheel* graph on n vertices. The *corona* $G \circ H$ of two graphs G and H is obtained by taking one copy of G and |V(G)| copies of H, and by joining each vertex in the ith copy of H to the ith vertex of G, where $1 \le i \le |V(G)|$. The corona graph $C_5 \circ K_2$ is depicted in Figure 3, for reference,

Figure 3

In a graph G, the process of deleting an edge uv and introducing a new vertex w and the edges uw and vw is called the *subdivision* of the edge uv. A spider is a tree on 2n + 1 vertices obtained by subdividing each edge of a star $K_{1,n}$. In other words, spider is nothing but $K_{1,n} \circ K_1$. A wounded spider is a graph obtained from subdividing at most n - 1 edges of a star $K_{1,n}$. The wounded spider includes K_1 , the star $K_{1,n-1}$. For example, a wounded spider G the graph shown in Figure 4. The *cartesian product* of two graphs G_1 and G_2 is denoted by $G_1 \times G_2$. The graph $K_{1,m} \times P_2$ is called the *m-book* graph and it is denoted by B_m . For example, the book graph B_4 is shown in Figure 5.

A *dominating set* is a subset S of the vertex set V such that every vertex is either in S or adjacent to a vertex in S, that is, such that every vertex in V-S is adjacent to at least one vertex in S. The *domination number* is the number of vertices in a smallest dominating set of G, it is denoted by $\gamma(G)$. A dominating set with γ elements is called a γ -set. For example, $S_1 = \{b,d\}$ and $S_2 = \{a,c\}$ are the minimum dominating sets of the graph G can be verified in Figure 6. For further results on domination in graphs, one can refer [5].

Note that $S_3 = \{a,b,c,d,e,f,g,h\}$ and $S_4 = \{a,b,c,d\}$, etc., are also dominating sets in G. The concept of splitting graph was introduced by Sampath Kumar and Walikar [6]. The *splitting graph* S(G), is the graph obtained from G, by adding a new vertex w for every vertex $v \in V(G)$, and joining w to all vertices of G adjacent to v. For example, a graph G and its splitting graph S(G) are shown in Figure 7.

The concept of cosplitting graphs has been recently introduced by Selvam Avadayappan and M. Bhuvaneshwari [1]. Let G be a graph with vertex set $\{v_1, v_2, ..., v_n\}$. The *cosplitting graph* CS(G) is the graph obtained from G, by adding a new vertex w_i for each vertex v_i and joining w_i to all vertices which are not adjacent to v_i in G. As an illustration, a graph G and its cosplitting graph CS(G) are shown in Figure 8.

The concept of β -splitting graph has been introduced by Selvam Avadayappan, [2]. Let $S_1, S_2, \dots, S_{\rho}$ be the maximum independent sets of G. The β -splitting graph $S_{\beta}(G)$ of a graph G is a graph obtained from G by adding new vertices $w_1, w_2, \dots, w_{\rho}$ such that each w_i is adjacent to each vertex in S_i , for $1 \le i \le \rho$. For example, a graph G and its β splitting graph $S_{\beta}(G)$ are shown in Figure 9.

In this paper, we introduce a new type of splitting graphs called γ - splitting graphs. Let G be a graph and let η be the number of γ sets in G. Let $S_1, S_2, ..., S_\eta$ be the minimum dominating sets in G. The γ -splitting graph, $S_{\gamma}(G)$, of a graph G is the graph obtained
from G by adding new vertices $w_1, w_2, ..., w_\eta$ and joining w_i to each vertex in S_i where $1 \le i \le \eta$. For example, the γ splitting
graph of P_4 is shown in Figure 10.

Clearly, $S_1 = \{v_1, v_4\}$, $S_2 = \{v_2, v_3\}$, $S_3 = \{v_1, v_3\}$, $S_4 = \{v_2, v_4\}$ are the γ -sets in P_4 , also w_1, w_2, w_3, w_4 are newly added vertices in $S_{\gamma}(P_4)$. Here, we discuss a few results on γ -splitting graphs. In this paper, we independently characterise graphs for which $S_{\gamma}(G)$ is a regular, biregular, tree, unicyclic graph. We attain bounds for the maximum and minimum degree of a vertex in $S_{\gamma}(G)$. Finally we study the distance properties of γ -splitting graphs.

II. CHARACTERISATION OF γ -SPLITTING GRAPHS

The following facts can be easily verified for γ -splitting graphs. For a vertex v in $S_{\gamma}(G)$, let $d^*(v)$ denote the degree of v in $S_{\gamma}(G)$. Fact 2.1 The newly added vertices $\{w_1, w_2, \dots, w_{\eta}\}$ are independent in $S_{\gamma}(G)$, that is, $d(w_i, w_j) \ge 2$, for any i, j, $1 \le i, j \le \eta$. Fact 2.2 $d^*(w_i) = \gamma(G)$, for i, $1 \le i \le \eta$.

Fact 2.3 For any vertex $v \in V(G)$, $d(v) \le d^*(v)$.

Fact 2.4 Every graph G is an induced subgraph of $S_{\gamma}(G)$. Even more G is a proper subgraph of $S_{\gamma}(G)$, since every graph contains at least one γ -set.

Fact 2.5 The graph having only one full vertex, bistar graph, the graph $H_{n,n}$, the path P_{3k} , $k \ge 1$ and the book graph B_m are some

Volume 4 Issue III, March 2016 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

graphs whose γ -splitting graphs contain exactly one newly added vertex.

$$\begin{split} & \text{Fact } 2.6 \; S_{\gamma}(K_n) \cong K_n \circ K_1 \text{ for any } n \geq 1. \\ & \text{Fact } 2.7 \; S_{\gamma}(K_{1,n}) \cong K_{1,n+1} \text{ for any } n \geq 2_{.} \\ & \text{Fact } 2.8 \; S_{\gamma}(K_n^{\ c}) \cong K_{1,n} \text{ for any } n \geq 1. \end{split}$$

The following theorems establish some properties of γ -splitting graphs.

$$\begin{array}{ll} \text{Proposition 2.9 For any } m \geq 1 \text{ and } n \geq 1, \ \eta(K_{m,n}) = \begin{cases} 1 & \text{if } m = 1, \ n \geq 2 \\ 2 & \text{if } m = n = 1 \\ 1 & \text{if } m = n = 2 \\ 6 & \text{if } m = 2, \ n > 2 \\ 1 & \text{if } m = 2, \ n > 2 \\ 1 & \text{if } m \geq 3, \ n \geq 3. \end{cases}$$

Proof Let $V = \{u_1, u_2, \dots, u_m; v_1, v_2, \dots, v_n\}$ be the vertex set of $K_{m,n}$.

Case (i) Suppose m = n = 1, then clearly $\{u_1\}$ and $\{v_1\}$ are only the γ -sets and hence $\eta(K_{m,n}) = 2$. Case (ii) If m = n = 2, then clearly $\{u_1, v_1\}, \{u_2, v_2\}, \{u_1, v_2\}, \{u_2, v_1\}, \{u_1, u_2\}$ and $\{v_1, v_2\}$ are the only γ -sets in $K_{2,2}$ and hence $\eta(K_{m,n}) = 6$.

Case (iii) If m = 1 and $n \ge 2$, then $G \cong K_{1,n}$, and therefore $\{u_1\}$ is the only γ -set. That is, $\eta(G) = 1$.

Case (iv) Suppose m = 2 and n > 2. Then $\{u_1, u_2\}$ and $\{u_j, v_k\}$ $1 \le j \le 2$, $1 \le k \le n$ are the γ -sets of G. Thus $\eta(K_{m,n}) = mn+1$. Case (v) If $m \ge 3$ and $n \ge 3$, then clearly $\{u_i, v_k\}$ $1 \le i \le m$, $1 \le k \le n$. Thus $\eta(K_{m,n}) = mn$.

Theorem 2.10 For any $n \ge 1$, there exists a graph G of order n, such that $S_{\gamma}(G)$ is n-regular.

Proof When $n = 1, G \cong K_1$, for which $S_{\gamma}(G) \cong K_2$ is the required graph. Therefore assume that $n \ge 2$, consider the graph $G \cong K_n \bigcup K_{n-1}^c$ with vertex set $\{v_1, v_2, \dots, v_n; u_1, u_2, \dots, u_{n-1}\}$ with edge set $\{v_i v_j / 1 \le i, j \le n\}$. For any $i, 1 \le i \le n$, clearly $\{v_i, u_1, u_2, \dots, u_{n-1}\}$ is a γ -set of G, that is, $\gamma(G) = n$. Hence there are n such γ -sets in G. Let w_1, w_2, \dots, w_n be the newly added vertices in $S_{\gamma}(G)$. Now for any $i, j, 1 \le i \le n, 1 \le j \le n-1$. Thus $d^*(v_i) = d^*(w_i) = d^*(u_j) = n$. Hence $S_{\gamma}(G)$ is n-regular. Thus G is the required graph. For example, the graph $K_3 \bigcup K_2^c$ and $S_{\gamma}(K_3 \bigcup K_2^c)$ which is a 3-regular graph are shown in Figure 11.

Now, consider the star graph $K_{1,n-1}$, $n \ge 3$, which is biregular. In addition $S_{\gamma}(K_{1,n-1})$ is also biregular. This shows that there are biregular graphs G whose $S_{\gamma}(G)$ are also biregular. Some examples are listed below:

Graph G	Degree set of G	$S_{\gamma}(G)$	Degree set of $S_{\gamma}(G)$	
$K_{1,n-1}, n \ge 3$	{1, n-2}	K _{1,n}	$\{1, \Delta(G)+1\}$	
P ₅	{1, 2}	$S_{\gamma}(P_5)$	$\{2, \Delta(G)+2\}$	
B _m	{2, m+1}	$S_{\gamma}(B_m)$	$\{2, \Delta(G)+1\}$	

Theorem 2.11 The graph $S_{\gamma}(K_{m,n})$ is biregular if m = n and $S_{\gamma}(K_{m,n})$ is triregular if $m \neq n$ for $m \ge 2$. Proof Let $V = \{v_1, v_2, ..., v_m; u_1, u_2, ..., u_n\}$ be the vertex set of $K_{m,n}$.

Case (i) Suppose m = n, and $m \ge 3$. The graph $S_{\gamma}(K_{m,m})$, then $d^*(w_i) = 2$. Also, by Proposition 1, $\eta = m^2$. Each u_i or v_i belongs to exactly $m \gamma$ -sets. Hence $d^*(u_i) = d^*(v_i) = 2m$. Then $S_{\gamma}(K_{m,m})$ is a (2m, 2)-biregular graph when m = n.

Case (ii) Let $m \neq n$. The graph $S_{\gamma}(K_{m,n})$, then $d^*(w_i) = 2$, and $\eta = mn$. Each u_i belongs to $n \gamma$ -sets and each v_i belongs to $m \gamma$ -sets. Then $d^*(u_i) = 2n$ and $d^*(v_i) = 2m$. Hence $S_{\gamma}(K_{m,n})$ is a (2m, 2n, 2)-triregular graph when $m \neq n$. Hence the proof. For example, the graph $K_{2,2}$ and $S_{\gamma}(K_{2,2})$ are shown in Figure 12.

Figure 12

Theorem 2.12 The graph $S_{\gamma}(G)$ is a tree if and only if G is one among the following graphs K_n^c , P_2 , $\left(\bigcup_{i=1}^k K_{1,n_i}\right) \bigcup K_m^c$, $k \ge 1$, n_i

$$\geq 2, m \geq 1, \text{ or } \bigcup_{i=1}^{k} K_{1,n_i}, k \geq 1, n_i \geq 2.$$

Proof Consider a graph G for which $S_{\gamma}(G)$ is a tree. Since G is an induced subgraph of $S_{\gamma}(G)$, G is acyclic. If G contains only two vertices, then obviously $G \cong K_2$ or K_2^{c} for which $S_{\gamma}(G) \cong P_4$ or P_3 respectively. So we assume that G contains at least three vertices. Case (i) Suppose G is a tree. Then G contains at most one full vertex. If G contains only one full vertex, then $G \cong K_{1,n}$ for which $S_{\gamma}(G) \cong K_{1,n+1}$. If G contains no full vertex, then $\gamma(G) > 1$ and thus G contains at least two vertices u and v in any γ -set S of G. Let w be the newly added vertex in $S_{\gamma}(G)$, corresponding to S. Now the u-v path together with the edges uw and wv forms a cycle in $S_{\gamma}(G)$, which is a contradiction to our assumption that $S_{\gamma}(G)$ is a tree. Therefore, this case does not arise.

Case (ii) Let G be a forest. If a γ -set contains at least two vertices in the same component, then $S_{\gamma}(G)$ contains a cycle, which is a contradiction. Therefore every component must contain exactly one vertex of each γ -set of G, which is possible when each

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

component is a star or a trivial graph and hence $G \cong \left(\bigcup_{i=1}^{k} K_{1,n_i}\right) \bigcup K_m^{c}$, $k \ge 1$, $n_i \ge 2$ and $m \ge 1$ or $G \cong \bigcup_{i=1}^{k} K_{1,n_i}$, $k \ge 1$, $n_i \ge 2$.

And the converse is obvious.

Figure 13

Let $P_k(m,n)$, where $k \ge 2$ and $m,n \ge 1$, be the graph obtained by identifying the centre vertices of the stars $K_{1,m}$ and $K_{1,n}$ at the ends of P_k respectively. The graph $C_3(m_1,m_2,m_3)$, where $m_i \ge 0$, is obtained from the cycle $C_3 = v_1v_2v_3v_1$ by identifying the centre of the star K_{1,m_i} , at v_i of C_3 , for $1 \le i \le 3$. For example, the graph $P_5(3, 4)$ and $C_3(3, 0, 0)$ are shown in Figure 14.

Theorem 2.13 The graph $S_{\gamma}(G)$ is unicyclic if and only if G is isomorphic to any one of the following graphs: (i) $P_2 \bigcup K_1$, (ii) K_3 , (iii) $B_{m,n}$, m > 1, n > 1, (iv) $P_k(m,n)$, k = 3, 4 and $m,n \ge 1$, (v) $B_{m,n} \bigcup K_t^c$, m > 1, n > 1, $t \ge 1$, (vi) $P_k(m,n) \bigcup K_t$, k = 3, 4 and $m, n \ge 1$, $t \ge 1$, (vii) $C_3(m_1,0,0) \bigcup_{p=0}^r pK_{1,n} \bigcup_{q=0}^s qK_n^c$ where $m_1 \ge 1$.

Proof Consider the graph G for which $S_{\gamma}(G)$ is unicyclic. Then there arise two cases.

Case (i) Suppose G is acyclic. Then clearly the cycle contains a newly added vertex w in $S_{\gamma}(G)$. Therefore, $\gamma(G) \neq 1$. Let G be a connected graph. Then $\eta = 1$, that is, G contains exactly one γ -set, since every newly added vertex forms a new cycle. In particular, $\gamma(G) = 2$ with the γ -set $\{u,v\}$. Let w be the newly added vertex in $S_{\gamma}(G)$. Then the (u,v)-path in G together with the newly added edges wu and vw forms the unique cycle in $S_{\gamma}(G)$, this is possible only when $G \cong B_{m,n}$, m > 1, n > 1, $P_k(m,n)$, k = 3, 4 and $m, n \ge 1$.

Let G be disconnected. If G has more than one component, with at least one edge, then $S_{\gamma}(G)$ has more cycles, which is a contradiction to our assumption that $S_{\gamma}(G)$ is unicyclic. Hence only one component G_1 of G can contain edges and the others are isolated vertices. If G_1 contains only one edge, then G must be $P_2 \bigcup K_1$. If G_1 contains more than one edge, then G_1 is isomorphic to $B_{m,n}, m > 1, n > 1, P_k(m,n), k = 3,4$ and $m,n \ge 1$ and hence $G \cong B_{m,n} \bigcup K_t^c, m > 1, n > 1, t \ge 1, P_k(m,n) \bigcup K_t^c, k = 3, 4$ and $m, n \ge 1$, $t \ge 1$.

Case (ii) Suppose G is unicyclic. Let G be a connected graph. Then newly added edges cannot be in a cycle. This is possible only

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

when $\gamma(G) = 1$. This forces that $G \cong K_3$ or $C_3(m_1,0,0)$ where $m_1 \ge 1$. Let G be disconnected graph. Then $\omega(G) \ge 2$. Clearly, one of the component of G is unicyclic and the remaining are trees. Since every component is connected, by the above argument exactly one vertex of each component belongs to γ -set of G. Also, the γ -set

must be unique to avoid cycles formed by newly added vertices. Such a graph is isomorphic to $C_3(m_1,0,0) \bigcup_{p=0}^{c} pK_{1,n} \bigcup_{q=0}^{c} qK_n^c$

where $m_1 \ge 1$. And the converse is obvious.

For example, the graphs $S_{\gamma}(B_{4,5} \bigcup K_3^c)$ and $S_{\gamma}(C_3(3, 0, 0) \bigcup K_{1,4} \bigcup K_3^c)$ are shown in Figure 15.

Theorem 2.14 Let G be a graph. Then $S_{\gamma}(G)$ has a full vertex if and only if $G \cong K_n^c$ or $H \vee K_1$ where H is a graph without a full vertex.

Proof Let w_i be the newly added vertices in $S_{\gamma}(G)$ for $1 \le i \le \eta$. Let v be a full vertex in $S_{\gamma}(G)$.

Case (i) Suppose v is a newly added vertex. Since w_i 's are all independent in $S_{\gamma}(G)$, v is the only newly added vertex. And hence V(G) is the only dominating set of G. This is possible only when $G \cong K_n^{c}$.

Case (ii) Let $v \in V(G)$. Then v is a full vertex of G. If G has a full vertex u other then v, then there are w_1 and w_2 corresponding to the γ -sets {u} and {v}. But w_1 and w_2 are not adjacent. In addition uw_2 and vw_1 are not the edges in $S_{\gamma}(G)$. Thus $S_{\gamma}(G)$ contains no full vertices, a contradiction. Therefore, G has exactly one full vertex. In other words, $G \cong H \lor K_1$ where H has no full vertex.

Conversely, assume that $G \cong H \lor K_1$. The graph $S_{\gamma}(G)$ is nothing but a graph obtained from $H \lor K_1$ by adding a new vertex and join it to the vertex of K_1 . Also $S_{\gamma}(K_n^c) \cong K_{1,n}$. In both the cases, $S_{\gamma}(G)$ has a full vertex. Hence the proof.

Proposition 2.15 For any connected graph G, $\Delta(G) \leq \Delta(S_{\gamma}(G)) \leq \max{\{\Delta(G) + \eta, \gamma\}}$.

Proof Let v be a vertex of maximum degree in $S_{\gamma}(G)$. If v is a newly added vertex, then $\Delta(S_{\gamma}(G)) = \gamma$. Otherwise, if $v \in V(G)$, then there arise two cases. When $v \notin \bigcup S_i$, $1 \le i \le \eta$, then $\Delta(S_{\gamma}(G)) = \Delta(G)$. When $v \in \bigcap S_i$, $1 \le i \le \eta$, $\Delta(S_{\gamma}(G)) = \Delta(G) + \eta$. Hence the maximum degree of the graph $S_{\gamma}(G)$ varies as, $\Delta(G) \le \Delta(S_{\gamma}(G)) \le \max\{\Delta(G) + \eta, \gamma\}$. Hence the proof. For any $n \ge 6$, there exists a graph of order n with $\Delta(S_{\gamma}(G)) = \gamma(G)$, P_{3k} , $k \ge 2$ is one such a graph. Also the spider graph proves the existence of graphs with $\Delta(S_{\gamma}(G)) = \Delta(G)$. The wounded spider graph stands as an example of graphs with $\Delta(S_{\gamma}(G)) = \Delta(G) + \eta$. For example the graphs G_1, G_2, G_3 with $\Delta(S_{\gamma}(G_1)) = \Delta(G_1)$, $\Delta(S_{\gamma}(G_2)) = \Delta(G_2) + \eta$ and $\Delta(S_{\gamma}(G_3)) = \gamma(G)$ respectively are shown in Figure 16. Here G_1 is the spider graph on 9 vertices, G_2 is the wounded spider graph on 5 vertices and G_3 is the path graph on 12 vertices.

Figure 16

III. DISTANCE PROPERTIES OF γ -SPLITTING GRAPHS

Here we are interested in studying about the distance properties in S_{γ} -graphs. Also normally we expect diam $(S_{\gamma}(G)) < \text{diam}(G)$. But there are graphs with diam $(S_{\gamma}(G)) \ge \text{diam}(G)$. This behaviour gives rise to following three definitions S_{γ}^{+} -graphs, S_{γ}^{-} -graphs, and S_{γ}^{*} -graphs as given below:

A graph G is called a S_{γ}^+ -graph if diam(G) < diam($S_{\gamma}(G)$).

It is called a S_{γ} -graph if diam(G) > diam($S_{\gamma}(G)$).

Finally, it is said to be a S_{γ}^* -graph if diam(G) = diam($S_{\gamma}(G)$). For example, S_{γ}^+ , S_{γ}^- , and S_{γ}^* -graphs are shown in Figure 17.

Some standard graphs with their diameters and corresponding families are listed below:

International Journal for Research	in Applied Science & Engineering
Technology	(IJRASET)

Graph G	diam(G)	diam(S _γ (G))	Туре
K _n	1	3	S_{γ}^{+} -graph
K _{m,n}	2	3	S_{γ}^{+} -graph
W ₃	1	2	S_{γ}^{+} -graph
Graph with exactly one full vortex	2	2	${S_{\gamma}}^{*}$ -graph
	2	2	S_{γ}^{*} -graph
H _{n,n}	3	3	${S_\gamma}^*$ -graph
B	3	3	S_{γ}^{*} -graph
Spider	4	4	S_{γ}^{*} -graph
Sprace	•	·	

Theorem 3.1 For any graph G, the distance between newly added vertices in $S_{\gamma}(G)$ is 2 or 3.

Proof Let G be any graph of order n, and w_1 and w_2 be any two newly added vertices in $S_{\gamma}(G)$. We know that $d^*(w_i) = \gamma(G), 1 \le i \le \eta$ and $d(w_1, w_2) \ge 2$ (Fact 2.1).

Case (i) Suppose $N(w_1) \bigcap N(w_2) \neq \phi$. Let $x \in N(w_1) \cap N(w_2)$. Then x is the common neighbour of w_1 and w_2 , and so $d(w_1, w_2) = 2$.

Case (ii) Suppose $N(w_1) \bigcap N(w_2) = \phi$. Then let $x \in N(w_1)$. Since $N(w_1)$ is a γ -set, every vertex in $N^c(w_1)$ is adjacent to at least one vertex in $N(w_1)$. But $N(w_2) \subseteq N^c(w_1)$. Therefore, there exists a vertex $y \in N(w_2)$ such that y is adjacent to a vertex x in $N(w_1)$. Then $d(w_1, w_2) = 3$.

Theorem 3.2 For any graph G, diam($S_{\gamma}(G)$) ≤ 4 .

Proof Let G be any graph and $S_{\gamma}(G)$ be its corresponding γ -splitting graph. Let u and v be any two vertices in $S_{\gamma}(G)$. We claim that $d(u,v) \leq 4$ for every $u, v \in V(G)$.

Case (i) If u and v are newly added vertices in $S_{\gamma}(G)$. By Theorem 3.1, $d(u,v) \le 3$.

Case (ii) If u is a newly added vertex and $v \in V(G)$. Then N(u) is a dominating set, and therefore $v \in N(u)$ or v is adjacent to a vertex in N(u) in $S_{\gamma}(G)$. This forces that $d(u,v) \le 2$.

Case (iii) Suppose u, $v \in V(G)$. Then there arise two subcases.

Subcase (i) Let u belong to a γ -set S. Then there is a newly added vertex w corresponding to S. If $v \in S$, then uwv is a u-v path of length 2 in $S_{\gamma}(G)$. Therefore $d(u,v) \leq 2$. If $v \notin S$, then there is a vertex v_1 in S, adjacent to v. Therefore uwv_1v is a u-v path of length 3, and so $d(u,v) \leq 3$. If v belongs to any other γ -set, then in a similar way we can show that $d(u,v) \leq 3$.

Subcase (ii) Neither u nor v belongs to any γ -set. Fix a newly added vertex w. Clearly, N(w) is a γ -set. So V(G) \subseteq N(N(w)) in $S_{\gamma}(G)$. Therefore, $d(u,v) \leq 4$. Hence diam $(S_{\gamma}(G)) \leq 4$.

The inequality stated above is strict. For example, $diam(S_{\gamma}(P_{3k})) = 4$, for any $k \ge 2$. For example, $diam(S_{\gamma}(P_6)) = 4$ can be verified in Figure 18.

The following corollary gives a characterisation of S_{γ} -graphs.

www.ijraset.com

IC Value: 13.98

Corollary 3.3 Any connected graph G with diam(G) > 4, is a S_{γ} -graph. Proof Suppose G is a connected graph and diam(G) > 4. Let $S_{\gamma}(G)$ be its corresponding diam($S_{\gamma}(G)$) \leq 4 and the result follows.

 γ -splitting graph. By Theorem 3.2,

It has been prove in [7], that
$$\eta(P_n) = \begin{cases} 1 & \text{if } n = 3k, k \ge 1\\ \frac{k^2 + 5k + 2}{2^{\text{if } n = 3k + 1}, k \ge 0} & \text{and} \\ k_{\text{if } n = 3k, k \ge 1} \\ + 2 \end{pmatrix}$$

$$\eta(C_n) = \begin{cases} 3 & \text{if } n = 3k, \, k \ge 1 \\ \frac{(3k+1)(k+2)}{2} & \text{if } n = 3k+1, \, k \ge 1 \\ 3k+2 & \text{if } n = 3k+2, \, k \ge 1 \end{cases}$$

Proposition 3.4 The path graph P_n is S_{γ}^+ -graph if $n \le 2$, S_{γ}^* -graph if n = 3, 4, and S_{γ}^- -graph if $n \ge 5$. Proposition 3.5 The cycle graph C_n is S_{γ}^+ -graph if $n \le 5$, S_{γ}^* -graph if n = 6, 7, and S_{γ}^- -graph if $n \ge 8$.

REFERENCES

- [1] Selvam Avadayappan and M. Bhuvaneshwari, Cosplitting and coregular graphs, International Journal of Mathematics and Soft Computing Vol.5, (2015), 57-64.
- [3] R. Balakrishnan and K. Ranganathan, A Text Book of graph Theory, Springer-Verlag, New York, Inc(1999).
- [4] F. Bunkley and F.Harary, Distance in Graph, Addison-Wesley Reading, 1990.
- [5] T.W. Haynes, S.T. Hedetneimi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York, (1998).
- [6] Sampath Kumar. E, Walikar. H.B, On the Splitting graph of a graph, (1980), J. Karnatak Uni. Sci 25:13.
- [7] H. B. Walikar, H. S. Ramane, B. D. Acharya, H.S. Shekhareppa, S. Arumugum, Partially balanced incomplete block design arising from minimum dominating sets of path and cycles, AKCE J. Graph. combin., 4(2) (2007), 223-232.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)