
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
 γ - Splitting Graphs

Selvam Avadayappan ${ }^{1}$, M. Bhuvaneshwari ${ }^{2}$, R. Iswarya ${ }^{3}$
${ }^{1,2,3}$ Research Department of Mathematics, VHNSN College(Autonomous), Virudhunagar-626001, India.

Abstract

Let $G(V, E)$ be a graph. A dominating set is a subset S of V such that every vertex not in S is adjacent to at least one vertex in S. The cardinality of a minimum dominating set is called the domination number, $\gamma(G)$. A dominating set with $\gamma v e r t i c e s$ is called a γ-set. Let η denote the number of γ-sets in G. For a graph G, the splitting graph $S(G)$, is obtained by adding a new vertex v 'corresponding to each vertex v of G and joining v 'to all vertices which are adjacent to v in G. Here we introduce a new type of graphs called minimum domination splitting graphs or simply γ splitting graphs. Let G be a graph and let $S_{l}, S_{2}, \ldots, S_{\eta}$ be the γ-sets in G. The γ-splitting graph, $S_{\gamma}(G)$, of a graph G is the graph obtained from G by adding new vertices $w_{1}, w_{2}, \ldots, w_{\eta}$ and joining w_{i} to each vertex in S_{i} where $1 \leq i \leq \eta$. In this paper, we establish some results on γ-splitting graphs.

Keywords: Dominating set, domination number, splitting graph, γ-splitting graph.
AMS Subject Classification Code(2010): 05C(Primary)

I. INTRODUCTION

Throughout this paper, we consider only finite, simple, undirected graphs. For notations and terminology we follow [3]. Let G(V,E) be a graph of order n . We denote the cycle on n vertices by C_{n}, the path of n vertices by P_{n}, and the complete graph on n vertices by K_{n}. The complete bipartite graph is denoted by $K_{m, n}$. In a graph G, degree of a vertex v is denoted by $d(v)$. If S is a subset of V, then $\langle S>$ denotes the vertex induced subgraph of G induced by S. For any vertex $v \in V(G)$, the open neighbourhood $N(v)$ of $V(G)$ is the set of all vertices adjacent to v, that is, $N(v)=\{u \in V(G) / u v \in E(G)\}$, and the closed neighbourhood of v is defined by $N[v]=N(v)$ $\bigcup\{\mathrm{v}\} . \mathrm{N}^{\mathrm{c}}(\mathrm{v})=\mathrm{V}-\mathrm{N}(\mathrm{v})$ is called the neighbourhood complement. For any set $\mathrm{S}, \mathrm{N}(\mathrm{S})=\bigcup_{v \in S} N(v)$.
A full vertex of G is a vertex in G which is adjacent to all other vertices of G. A graph G is said to be r-regular if every vertex in G is of degree r . For any two integers k and $\mathrm{d}, \mathrm{k} \neq \mathrm{d}, \quad \mathrm{a}(k, d)$ - biregular graph is a graph in which every vertex is of degree either k or d . For any three integers x, a, and $\mathrm{b}, \mathrm{x} \neq \mathrm{a} \neq \mathrm{b}, \mathrm{a}(x, a, b)$ - triregular graph is a graph in which every vertex is of degree either x or a or b . For example, a (2,3)-biregular and a (1,2,6)- triregular graphs are shown in Figure 1.

(2,3)-biregular

(1,2,6)- triregular

Figure 1
The distance $\mathrm{d}(\mathrm{u}, \mathrm{v})$ in G between two vertices u and v is the length of a shortest $\mathrm{u}-\mathrm{v}$ path in G . The eccentricity $\mathrm{e}(\mathrm{u})$, of a vertex u is the distance of a farthest vertex from u, and radius $\operatorname{rad}(G)$ of G is the minimum eccentricity. The maximum distance between any two vertices in G is the diameter of G, denoted by $\operatorname{diam}(G)$, that is, $\operatorname{diam}(G)=\max _{u, v \in V(G)}\{d(u, v)\}$. A vertex u with $\quad e(u)=\operatorname{rad}(G)$ is called a central vertex. A graph G for which $\operatorname{rad}(G)=\operatorname{diam}(G)$ is called a self-centered graph of radius rad(G). Or equivalently, a graph is self-centered if all of its vertices are central vertices. For further basic definitions on distance in graphs one can refer [4].
Let $H_{n, n}$ denote the graph with vertex set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} ; \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ and edge set $\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}} / \quad 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{n}-\mathrm{i}+1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. The graph $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ is the bistar obtained from the stars $\mathrm{K}_{1, \mathrm{~m}}$ and $\mathrm{K}_{1, \mathrm{n}}$ by joining their central vertices by means of an edge. For example, the graph $\mathrm{H}_{4,4}$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

and the bistar $\mathrm{B}_{4,5}$ are shown in Figure 2.

$\mathrm{H}_{4}, 4$

$\mathbf{B}_{4,5}$

Figure 2
The join $\mathrm{G} \vee \mathrm{H}$ of the graph G and H is the graph obtained from $\mathrm{G} \bigcup \mathrm{H}$ by joining every vertex of G to each vertex of H by means of an edge. The graph $\mathrm{W}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}-1} \vee \mathrm{~K}_{1}$ is called the wheel graph on n vertices. The corona $\mathrm{G} \circ \mathrm{H}$ of two graphs G and H is obtained by taking one copy of G and $|V(G)|$ copies of H , and by joining each vertex in the $\mathrm{i}^{\text {th }}$ copy of H to the $\mathrm{i}^{\text {th }}$ vertex of G , where $1 \leq \mathrm{i} \leq$ $|V(G)|$. The corona graph $\mathrm{C}_{5} \circ \mathrm{~K}_{2}$ is depicted in Figure 3, for reference,

Figure 3
In a graph G , the process of deleting an edge uv and introducing a new vertex w and the edges uw and vw is called the subdivision of the edge uv . A spider is a tree on $2 \mathrm{n}+1$ vertices obtained by subdividing each edge of a star $\mathrm{K}_{1, n}$. In other words, spider is nothing but $\mathrm{K}_{1, \mathrm{n}}{ }^{\circ} \mathrm{K}_{1}$. A wounded spider is a graph obtained from subdividing at most $\mathrm{n}-1$ edges of a star $\mathrm{K}_{1, \mathrm{n}}$. The wounded spider includes K_{1}, the star $\mathrm{K}_{1, \mathrm{n}-1}$. For example, a wounded spider G the graph shown in Figure 4. The cartesian product of two graphs G_{1} and G_{2} is denoted by $G_{1} \times G_{2}$. The graph $K_{1, m} \times P_{2}$ is called the m-book graph and it is denoted by B_{m}. For example, the book graph B_{4} is shown in Figure 5 .

Figure 4
Figure 5
A dominating set is a subset S of the vertex set V such that every vertex is either in S or adjacent to a vertex in S , that is, such that every vertex in V-S is adjacent to at least one vertex in S . The domination number is the number of vertices in a smallest dominating set of G, it is denoted by $\gamma(\mathrm{G})$. A dominating set with γ elements is called a γ-set. For example, $\mathrm{S}_{1}=\{\mathrm{b}, \mathrm{d}\}$ and $\mathrm{S}_{2}=\{\mathrm{a}, \mathrm{c}\}$ are the minimum dominating sets of the graph G can be verified in Figure 6. For further results on domination in graphs, one can refer [5].

G

Figure 6

Note that $S_{3}=\{a, b, c, d, e, f, \mathrm{f}, \mathrm{h}\}$ and $\mathrm{S}_{4}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$, etc., are also dominating sets in G . The concept of splitting graph was introduced by Sampath Kumar and Walikar [6]. The splitting graph $\mathrm{S}(\mathrm{G})$, is the graph obtained from G, by adding a new vertex w for every vertex $\quad v \in V(G)$, and joining w to all vertices of G adjacent to v. For example, a graph G and its splitting graph $S(G)$ are shown in Figure 7.

G

$\mathbf{S}(\mathbf{G})$

Figure 7
The concept of cosplitting graphs has been recently introduced by Selvam Avadayappan and M. Bhuvaneshwari [1]. Let G be a graph with vertex set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. The cosplitting graph $\mathrm{CS}(\mathrm{G})$ is the graph obtained from G , by adding a new vertex w_{i} for each vertex v_{i} and joining w_{i} to all vertices which are not adjacent to v_{i} in G. As an illustration, a graph G and its cosplitting graph $C S(G)$ are shown in Figure 8.

G

CS(G

Figure 8

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

The concept of β-splitting graph has been introduced by Selvam Avadayappan,
M. Bhuvaneshwari and B. Vijaya Lakshmi [2]. Let $S_{1}, S_{2}, \ldots, S_{\rho}$ be the maximum independent sets of G. The β-splitting graph $S_{\beta}(G)$ of a graph G is a graph obtained from G by adding new vertices $w_{1}, w_{2}, \ldots, w_{\rho}$ such that each w_{i} is adjacent to each vertex in S_{i}, for $1 \leq i \leq \rho$. For example, a graph G and its β splitting graph $S_{\beta}(G)$ are shown in Figure 9.

In this paper, we introduce a new type of splitting graphs called γ - splitting graphs. Let G be a graph and let η be the number of γ sets in G. Let $S_{1}, S_{2}, \ldots, S_{\eta}$ be the minimum dominating sets in G. The γ-splitting graph, $S_{\gamma}(G)$, of a graph G is the graph obtained from G by adding new vertices $w_{1}, w_{2}, \ldots, w_{\eta}$ and joining w_{i} to each vertex in S_{i} where $1 \leq i \leq \eta$. For example, the γ - splitting graph of P_{4} is shown in Figure 10.

Figure 10

Clearly, $S_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}, \mathrm{S}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}, \mathrm{S}_{3}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}, \mathrm{S}_{4}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\}$ are the γ-sets in P_{4}, also $\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}$ are newly added vertices in $\mathrm{S}_{\gamma}\left(\mathrm{P}_{4}\right)$. Here, we discuss a few results on γ-splitting graphs. In this paper, we independently characterise graphs for which $\mathrm{S}_{\gamma}(\mathrm{G})$ is a regular, biregular, tree, unicyclic graph. We attain bounds for the maximum and minimum degree of a vertex in $S_{\gamma}(G)$. Finally we study the distance properties of γ-splitting graphs.

II. CHARACTERISATION OF γ-SPLITTING GRAPHS

The following facts can be easily verified for γ-splitting graphs. For a vertex v in $S_{\gamma}(G)$, let $d^{*}(v)$ denote the degree of v in $S_{\gamma}(G)$.
Fact 2.1 The newly added vertices $\left\{w_{1}, w_{2}, \ldots, w_{\eta}\right\}$ are independent in $S_{\gamma}(G)$, that is, $d\left(w_{i}, w_{j}\right) \geq 2$, for any $i, j, 1 \leq i, j \leq \eta$.
Fact $2.2 \mathrm{~d}^{*}\left(\mathrm{w}_{\mathrm{i}}\right)=\gamma(\mathrm{G})$, for $\mathrm{i}, 1 \leq \mathrm{i} \leq \eta$.
Fact 2.3 For any vertex $\mathrm{v} \in \mathrm{V}(\mathrm{G}), \mathrm{d}(\mathrm{v}) \leq \mathrm{d}^{*}(\mathrm{v})$.
Fact 2.4 Every graph G is an induced subgraph of $S_{\gamma}(G)$. Even more G is a proper subgraph of $S_{\gamma}(G)$, since every graph contains at least one γ-set.
Fact 2.5 The graph having only one full vertex, bistar graph, the graph $H_{n, n}$, the path $P_{3 k}, k \geq 1$ and the book graph B_{m} are some

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

graphs whose γ-splitting graphs contain exactly one newly added vertex.

Fact $2.6 \mathrm{~S}_{\gamma}\left(\mathrm{K}_{\mathrm{n}}\right) \cong \mathrm{K}_{\mathrm{n}} \circ \mathrm{K}_{1}$ for any $\mathrm{n} \geq 1$.
Fact 2.7 $\mathrm{S}_{\gamma}\left(\mathrm{K}_{1, \mathrm{n}}\right) \cong \mathrm{K}_{1, \mathrm{n}+1}$ for any $\mathrm{n} \geq 2$.
Fact $2.8 \mathrm{~S}_{\gamma}\left(\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{c}}\right) \cong \mathrm{K}_{1, \mathrm{n}}$ for any $\mathrm{n} \geq 1$.
The following theorems establish some properties of γ-splitting graphs.
Proposition 2.9 For any $\mathrm{m} \geq 1$ and $\mathrm{n} \geq 1, \eta\left(\mathrm{~K}_{\mathrm{m}, \mathrm{n}}\right)= \begin{cases}1 & \text { if } \mathrm{m}=1, \mathrm{n} \geq 2 \\ 2 & \text { if } \mathrm{m}=\mathrm{n}=1 \\ 6 & \text { if } \mathrm{m}=\mathrm{n}=2 \\ m n+1 & \text { if } \mathrm{m}=2, \mathrm{n}>2 \\ m n & \text { if } \mathrm{m} \geq 3, \mathrm{n} \geq 3 .\end{cases}$
Proof Let $V=\left\{u_{1}, u_{2}, \ldots, u_{m} ; v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of $K_{m, n}$.
Case (i) Suppose $m=n=1$, then clearly $\left\{u_{1}\right\}$ and $\left\{v_{1}\right\}$ are only the γ-sets and hence $\eta\left(K_{m, n}\right)=2$.
Case (ii) If $m=n=2$, then clearly $\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\},\left\{u_{1}, v_{2}\right\},\left\{u_{2}, v_{1}\right\},\left\{u_{1}, u_{2}\right\}$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ are the only $\quad \gamma$-sets in $K_{2,2}$ and hence $\eta\left(\mathrm{K}_{m, n}\right)$ $=6$.
Case (iii) If $m=1$ and $n \geq 2$, then $G \cong K_{1, n}$, and therefore $\left\{u_{1}\right\}$ is the only γ-set. That is, $\eta(G)=1$.
Case (iv) Suppose $m=2$ and $n>2$. Then $\left\{u_{1}, u_{2}\right\}$ and $\left\{u_{j}, v_{k}\right\} 1 \leq j \leq 2,1 \leq k \leq n$ are the γ-sets of G. Thus $\eta\left(K_{m, n}\right)=m n+1$.
Case (v) If $m \geq 3$ and $n \geq 3$, then clearly $\left\{u_{i}, v_{k}\right\} 1 \leq i \leq m, 1 \leq k \leq n$. Thus $\eta\left(K_{m, n}\right)=m n$.
Theorem 2.10 For any $n \geq 1$, there exists a graph G of order n, such that $S_{\gamma}(G)$ is n-regular.
Proof When $n=1, G \cong K_{1}$, for which $S_{\gamma}(G) \cong K_{2}$ is the required graph. Therefore assume that $\quad n \geq 2$, consider the graph $G \cong K_{n} \cup$ K_{n-1}^{c} with vertex set $\left\{v_{1}, v_{2}, \ldots \ldots, v_{n} ; u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ with edge set $\left\{v_{i} v_{j} / 1 \leq i, j \leq n\right\}$. For any $i, 1 \leq i \leq n$, clearly $\left\{v_{i}, u_{1}, u_{2}, \ldots \ldots ., u_{n-1}\right\}$ is a γ-set of G, that is, $\gamma(\mathrm{G})=\mathrm{n}$. Hence there are n such γ-sets in G. Let $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}$ be the newly added vertices in $\mathrm{S}_{\gamma}(\mathrm{G})$. Now for any $\mathrm{i}, \mathrm{j}, 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{n}-1$. Thus $\mathrm{d}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}^{*}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{d}^{*}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{n}$. Hence $\mathrm{S}_{\gamma}(\mathrm{G})$ is n -regular. Thus G is the required graph. For example, the graph $K_{3} \cup K_{2}{ }^{c}$ and $S_{\gamma}\left(K_{3} \cup K_{2}{ }^{\text {c }}\right.$) which is a 3-regular graph are shown in Figure 11.

Figure

Now, consider the star graph $\mathrm{K}_{1, \mathrm{n}-1}, \mathrm{n} \geq 3$, which is biregular. In addition $\mathrm{S}_{\gamma}\left(\mathrm{K}_{1, \mathrm{n}-1}\right)$ is also biregular. This shows that there are biregular graphs G whose $S_{\gamma}(\mathrm{G})$ are also biregular. Some examples are listed below:

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Graph G	Degree set of G	$\mathrm{S}_{\gamma}(\mathrm{G})$	Degree set of $\mathrm{S}_{\gamma}(\mathrm{G})$
$\mathrm{K}_{1, \mathrm{n}-1}, \mathrm{n} \geq 3$	$\{1, \mathrm{n}-2\}$	$\mathrm{K}_{1, \mathrm{n}}$	$\{1, \Delta(\mathrm{G})+1\}$
P_{5}	$\{1,2\}$	$\mathrm{S}_{\gamma}\left(\mathrm{P}_{5}\right)$	$\{2, \Delta(\mathrm{G})+2\}$
B_{m}	$\{2, \mathrm{~m}+1\}$	$\mathrm{S}_{\gamma}\left(\mathrm{B}_{\mathrm{m}}\right)$	$\{2, \Delta(\mathrm{G})+1\}$

Theorem 2.11 The graph $S_{\gamma}\left(K_{m, n}\right)$ is biregular if $m=n$ and $S_{\gamma}\left(K_{m, n}\right)$ is triregular if $m \neq n$ for $m \geq 2$.
Proof Let $V=\left\{v_{1}, v_{2}, \ldots, v_{m} ; u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertex set of $K_{m, n}$.
Case (i) Suppose $m=n$, and $m \geq 3$. The graph $S_{\gamma}\left(K_{m, m}\right)$, then $d^{*}\left(w_{i}\right)=2$. Also, by Proposition $1, \eta=m^{2}$. Each u_{i} or v_{i} belongs to exactly $\mathrm{m} \gamma$-sets. Hence $\mathrm{d}^{*}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{d}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{~m}$. Then $\mathrm{S}_{\gamma}\left(\mathrm{K}_{\mathrm{m}, \mathrm{m}}\right)$ is a $(2 \mathrm{~m}, 2)$-biregular graph when $\mathrm{m}=\mathrm{n}$.

Case (ii) Let $m \neq n$. The graph $S_{\gamma}\left(K_{m, n}\right)$, then $d^{*}\left(w_{i}\right)=2$, and $\eta=m n$. Each u_{i} belongs to $n \gamma$ - sets and each v_{i} belongs to $m \gamma$-sets. Then $d^{*}\left(u_{i}\right)=2 n$ and $d^{*}\left(v_{i}\right)=2 m$. Hence $S_{\gamma}\left(K_{m, n}\right)$ is a $(2 m, 2 n, 2)$-triregular graph when $m \neq n$. Hence the proof. For example, the graph $\mathrm{K}_{2,2}$ and $\mathrm{S}_{\gamma}\left(\mathrm{K}_{2,2}\right)$ are shown in Figure 12.

Figure 12
Theorem 2.12 The graph $\mathrm{S}_{\gamma}(\mathrm{G})$ is a tree if and only if G is one among the following graphs $\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{c}}, \mathrm{P}_{2},\left(\bigcup_{i=1}^{k} K_{1, n_{i}}\right) \bigcup \mathrm{K}_{\mathrm{m}}{ }^{\mathrm{c}}, \mathrm{k} \geq 1, \mathrm{n}_{\mathrm{i}}$ $\geq 2, \mathrm{~m} \geq 1$, or $\bigcup_{i=1}^{k} K_{1, n_{i}}, \mathrm{k} \geq 1, \mathrm{n}_{\mathrm{i}} \geq 2$.
Proof Consider a graph G for which $S_{\gamma}(G)$ is a tree. Since G is an induced subgraph of $S_{\gamma}(G)$, G is acyclic. If G contains only two vertices, then obviously $G \cong K_{2}$ or $K_{2}{ }^{c}$ for which $S_{\gamma}(G) \cong P_{4}$ or P_{3} respectively. So we assume that G contains at least three vertices. Case (i) Suppose G is a tree. Then G contains at most one full vertex. If G contains only one full vertex, then $G \cong K_{1 . n}$ for which $\mathrm{S}_{\gamma}(\mathrm{G}) \cong \mathrm{K}_{1, \mathrm{n}+1}$. If G contains no full vertex, then $\gamma(\mathrm{G})>1$ and thus G contains at least two vertices u and v in any γ-set S of G. Let w be the newly added vertex in $S_{\gamma}(G)$, corresponding to S. Now the $u-v$ path together with the edges uw and wv forms a cycle in $S_{\gamma}(G)$, which is a contradiction to our assumption that $S_{\gamma}(G)$ is a tree. Therefore, this case does not arise.
Case (ii) Let G be a forest. If a γ-set contains at least two vertices in the same component, then $S_{\gamma}(G)$ contains a cycle, which is a contradiction. Therefore every component must contain exactly one vertex of each γ-set of G, which is possible when each

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

component is a star or a trivial graph and hence $\mathrm{G} \cong\left(\bigcup_{i=1}^{k} K_{1, n_{i}}\right) \cup \mathrm{K}_{\mathrm{m}}{ }^{\mathrm{c}}, \mathrm{k} \geq 1, \mathrm{n}_{\mathrm{i}} \geq 2$ and $\mathrm{m} \geq 1$ or $\mathrm{G} \cong \bigcup_{i=1}^{k} K_{1, n_{i}}, \mathrm{k} \geq 1, \mathrm{n}_{\mathrm{i}} \geq 2$. And the converse is obvious.

For example, the graph $\mathrm{S}_{\gamma}\left(\bigcup_{i=1}^{3} K_{1,3}\right)$ and $\mathrm{S}_{\gamma}\left(\left(\bigcup_{i=1}^{2} K_{1,3}\right) \cup \mathrm{K}_{3}{ }^{\mathrm{c}}\right)$ are shown in Figure 13.

Figure 13
Let $P_{k}(m, n)$, where $k \geq 2$ and $m, n \geq 1$, be the graph obtained by identifying the centre vertices of the stars $K_{1, m}$ and $K_{1, n}$ at the ends of P_{k} respectively. The graph $C_{3}\left(m_{1}, m_{2}, m_{3}\right)$, where $m_{i} \geq 0$, is obtained from the cycle $C_{3}=v_{1} v_{2} v_{3} v_{1}$ by identifying the centre of the star $K_{1, m_{i}}$, at v_{i} of C_{3}, for $1 \leq i \leq 3$. For example, the graph $P_{5}(3,4)$ and $C_{3}(3,0,0)$ are shown in Figure 14 .

Figuer 14

Theorem 2.13 The graph $S_{\gamma}(G)$ is unicyclic if and only if G is isomorphic to any one of the following graphs: (i) $P_{2} \bigcup K_{1}$, (ii) K_{3}, (iii) $B_{m, n}, m>1, n>1$, (iv) $P_{k}(m, n), k=3,4$ and $m, n \geq 1$, (v) $B_{m, n} \cup K_{t}^{c}, m>1, n>1, t \geq 1$, (vi) $P_{k}(m, n) \cup K_{t}, k=3,4$ and $\mathrm{m}, \mathrm{n} \geq 1, \mathrm{t} \geq 1, \quad$ (vii) $\mathrm{C}_{3}\left(\mathrm{~m}_{1}, 0,0\right) \bigcup_{p=0}^{r} p K_{1, n} \bigcup_{q=0}^{s} q K_{n}^{c}$ where $\mathrm{m}_{1} \geq 1$.
Proof Consider the graph G for which $\mathrm{S}_{\gamma}(\mathrm{G})$ is unicyclic. Then there arise two cases.
Case (i) Suppose G is acyclic. Then clearly the cycle contains a newly added vertex w in $\mathrm{S}_{\gamma}(\mathrm{G})$. Therefore, $\gamma(\mathrm{G}) \neq 1$. Let G be a connected graph. Then $\eta=1$, that is, G contains exactly one $\quad \gamma$-set, since every newly added vertex forms a new cycle. In particular, $\gamma(\mathrm{G})=2$ with the γ-set $\{\mathrm{u}, \mathrm{v}\}$. Let w be the newly added vertex in $\mathrm{S}_{\gamma}(\mathrm{G})$. Then the (u,v)-path in G together with the newly added edges wu and vw forms the unique cycle in $S_{\gamma}(G)$, this is possible only when $\quad G \cong B_{m, n}, m>1, n>1, P_{k}(m, n), k=3,4$ and $\mathrm{m}, \mathrm{n} \geq 1$.
Let G be disconnected. If G has more than one component, with at least one edge, then $\mathrm{S}_{\gamma}(\mathrm{G})$ has more cycles, which is a contradiction to our assumption that $S_{\gamma}(G)$ is unicyclic. Hence only one component G_{1} of G can contain edges and the others are isolated vertices. If G_{1} contains only one edge, then G must be $P_{2} \cup K_{1 .}$ If G_{1} contains more than one edge, then G_{1} is isomorphic to $\mathrm{B}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}>1, \mathrm{n}>1, \mathrm{P}_{\mathrm{k}}(\mathrm{m}, \mathrm{n}), \mathrm{k}=3,4$ and $\mathrm{m}, \mathrm{n} \geq 1$ and hence $\mathrm{G} \cong \mathrm{B}_{\mathrm{m}, \mathrm{n}} \cup \mathrm{K}_{\mathrm{t}}^{\mathrm{c}}, \mathrm{m}>1, \mathrm{n}>1, \mathrm{t} \geq 1, \mathrm{P}_{\mathrm{k}}(\mathrm{m}, \mathrm{n}) \cup \mathrm{K}_{\mathrm{t}}^{\mathrm{c}}, \mathrm{k}=3,4$ and $\mathrm{m}, \mathrm{n} \geq 1$, $t \geq 1$.
Case (ii) Suppose G is unicyclic. Let G be a connected graph. Then newly added edges cannot be in a cycle. This is possible only

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

when $\gamma(G)=1$. This forces that $G \cong K_{3}$ or $C_{3}\left(m_{1}, 0,0\right)$ where $m_{1} \geq 1$.
Let G be disconnected graph. Then $\omega(\mathrm{G}) \geq 2$. Clearly, one of the component of G is unicyclic and the remaining are trees. Since every component is connected, by the above argument exactly one vertex of each component belongs to γ-set of G. Also, the γ-set must be unique to avoid cycles formed by newly added vertices. Such a graph is isomorphic to $\mathrm{C}_{3}\left(\mathrm{~m}_{1}, 0,0\right) \bigcup_{p=0}^{r} p K_{1, n} \bigcup_{q=0}^{s} q K_{n}^{c}$ where $m_{1} \geq 1$. And the converse is obvious.
For example, the graphs $\mathrm{S}_{\gamma}\left(\mathrm{B}_{4,5} \cup \mathrm{~K}_{3}{ }^{c}\right)$ and $\mathrm{S}_{\gamma}\left(\mathrm{C}_{3}(3,0,0) \bigcup \mathrm{K}_{1,4} \bigcup \mathrm{~K}_{3}{ }^{c}\right.$) are shown in Figure 15.

Figure

Theorem 2.14 Let G be a graph. Then $S_{\gamma}(G)$ has a full vertex if and only if $G \cong K_{n}{ }^{c}$ or $H \vee K_{1}$ where H is a graph without a full vertex.
Proof Let w_{i} be the newly added vertices in $\mathrm{S}_{\gamma}(\mathrm{G})$ for $1 \leq \mathrm{i} \leq \eta$. Let v be a full vertex in $\mathrm{S}_{\gamma}(\mathrm{G})$.
Case (i) Suppose v is a newly added vertex. Since w_{i}^{\prime} 's are all independent in $S_{\gamma}(G), v$ is the only newly added vertex. And hence $V(G)$ is the only dominating set of G. This is possible only when $G \cong K_{n}{ }^{c}$.
Case (ii) Let $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. Then v is a full vertex of G . If G has a full vertex u other then v , then there are w_{1} and w_{2} corresponding to the γ-sets $\{u\}$ and $\{v\}$. But w_{1} and w_{2} are not adjacent. In addition u_{2} and vw_{1} are not the edges in $\mathrm{S}_{\gamma}(\mathrm{G})$. Thus $\mathrm{S}_{\gamma}(\mathrm{G})$ contains no full vertices, a contradiction. Therefore, G has exactly one full vertex. In other words, $G \cong H \vee K_{1}$ where H has no full vertex.
Conversely, assume that $\mathrm{G} \cong \mathrm{H} \vee \mathrm{K}_{1}$. The graph $\mathrm{S}_{\gamma}(\mathrm{G})$ is nothing but a graph obtained from $\mathrm{H} \vee \mathrm{K}_{1}$ by adding a new vertex and join it to the vertex of K_{1}. Also $\mathrm{S}_{\gamma}\left(\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{c}}\right) \cong \mathrm{K}_{1, \mathrm{n}}$. In both the cases, $\mathrm{S}_{\gamma}(\mathrm{G})$ has a full vertex. Hence the proof.
Proposition 2.15 For any connected graph $\mathrm{G}, \Delta(\mathrm{G}) \leq \Delta\left(\mathrm{S}_{\gamma}(\mathrm{G})\right) \leq \max \{\Delta(\mathrm{G})+\eta, \gamma\}$.
Proof Let v be a vertex of maximum degree in $\mathrm{S}_{\gamma}(\mathrm{G})$. If v is a newly added vertex, then $\quad \Delta\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)=\gamma$. Otherwise, if $\mathrm{v} \in$ $\mathrm{V}(\mathrm{G})$, then there arise two cases. When $\mathrm{v} \notin \bigcup S_{i}, 1 \leq \mathrm{i} \leq \eta$, then $\Delta\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)=\Delta(\mathrm{G})$. When $\mathrm{v} \in \bigcap S_{i}, 1 \leq \mathrm{i} \leq \eta, \Delta\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)=\Delta$ (G) $+\eta$. Hence the maximum degree of the graph $\mathrm{S}_{\gamma}(\mathrm{G})$ varies as, $\Delta(\mathrm{G}) \leq \Delta\left(\mathrm{S}_{\gamma}(\mathrm{G})\right) \leq \max \{\Delta(\mathrm{G})+\eta, \gamma\}$. Hence the proof. For any $\mathrm{n} \geq 6$, there exists a graph of order n with $\Delta\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)=\gamma(\mathrm{G}), \mathrm{P}_{3 \mathrm{k}}, \mathrm{k} \geq 2$ is one such a graph. Also the spider graph proves the existence of graphs with $\Delta\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)=\Delta(\mathrm{G})$. The wounded spider graph stands as an example of graphs with $\Delta\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)=\Delta(\mathrm{G})+\eta$. For example the graphs $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$ with $\Delta\left(\mathrm{S}_{\gamma}\left(\mathrm{G}_{1}\right)\right)=\Delta\left(\mathrm{G}_{1}\right), \Delta\left(\mathrm{S}_{\gamma}\left(\mathrm{G}_{2}\right)\right)=\Delta\left(\mathrm{G}_{2}\right)+\eta$ and $\Delta\left(\mathrm{S}_{\gamma}\left(\mathrm{G}_{3}\right)\right)=\gamma(\mathrm{G})$ respectively are shown in Figure 16. Here G_{1} is the spider graph on 9 vertices, G_{2} is the wounded spider graph on 5 vertices and G_{3} is the path graph on 12 vertices.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Figure 16

III. DISTANCE PROPERTIES OF γ-SPLITTING GRAPHS

Here we are interested in studying about the distance properties in $S_{\gamma^{-}}$-graphs. Also normally we expect diam $\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)<\operatorname{diam}(\mathrm{G})$. But there are graphs with $\operatorname{diam}\left(\mathrm{S}_{\gamma}(\mathrm{G})\right) \geq \operatorname{diam}(\mathrm{G})$. This behaviour gives rise to following three definitions $\mathrm{S}_{\gamma}{ }^{+}$-graphs, $\mathrm{S}_{\gamma}{ }^{-}$-graphs, and $\mathrm{S}_{\gamma}{ }^{*}$-graphs as given below:
A graph G is called a $S_{\gamma}{ }^{+}$-graph if $\operatorname{diam}(\mathrm{G})<\operatorname{diam}\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)$.
It is called a $S_{\gamma}^{-}-\operatorname{graph}$ if $\operatorname{diam}(\mathrm{G})>\operatorname{diam}\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)$.
Finally, it is said to be a $S_{\gamma}{ }^{*}$ graph if $\operatorname{diam}(G)=\operatorname{diam}\left(\mathrm{S}_{\gamma}(\mathrm{G})\right)$. For example, $\mathrm{S}_{\gamma}{ }^{+}, \mathrm{S}_{\gamma}{ }^{-}$, and $\quad \mathrm{S}_{\gamma}{ }^{*}$-graphs are shown in Figure 17.

$\mathbf{S}_{\gamma}{ }^{+}$-graph

$\mathrm{S}_{\gamma}{ }^{-}$

$\mathbf{S}_{\gamma}{ }^{*}$-graph

Figure 17

Some standard graphs with their diameters and corresponding families are listed below:

International Journal for Research in Applied Science \& Engineering Technology (IJJRASET)

Graph G	diam(G)	$\operatorname{diam}\left(\mathrm{S}_{\gamma}(\mathrm{G})\right.$)	Type
K_{n}	1	3	$\mathrm{S}_{\gamma}{ }^{+}$-graph
$\mathrm{K}_{\mathrm{m}, \mathrm{n}}$	2	3	$\mathrm{S}_{\gamma}{ }^{-}$-graph
W_{3}	1	2	$\mathrm{S}_{\gamma}{ }^{+}$-graph
Graph with exactly one full vertex	2	2	$\mathrm{S}_{\gamma}{ }^{*}$-graph
$\mathrm{H}_{\mathrm{n}, \mathrm{n}}$	3	3	$\mathrm{S}_{\gamma}{ }^{\text {- }}$-graph
B_{m}	3	3	$\mathrm{S}_{\gamma}{ }^{\text {- }}$ graph
$\mathrm{B}_{\mathrm{m}, \mathrm{n}}$	3	3	$\mathrm{S}_{\gamma}{ }^{*}$-graph
Spider	4	4	$\mathrm{S}_{\gamma}{ }^{*}$-graph

Theorem 3.1 For any graph G, the distance between newly added vertices in $S_{\gamma}(\mathrm{G})$ is 2 or 3 .
Proof Let G be any graph of order n, and w_{1} and w_{2} be any two newly added vertices in $S_{\gamma}(G)$. We know that $d^{*}\left(w_{i}\right)=\gamma(G), 1 \leq i$ $\leq \eta$ and $\mathrm{d}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right) \geq 2$ (Fact 2.1).
Case (i) Suppose $N\left(w_{1}\right) \cap N\left(w_{2}\right) \neq \varphi$. Let $x \in N\left(w_{1}\right) \cap N\left(w_{2}\right)$. Then x is the common neighbour of w_{1} and w_{2}, and so $d\left(w_{1}, w_{2}\right)=$ 2.

Case (ii) Suppose $N\left(w_{1}\right) \bigcap N\left(w_{2}\right)=\varphi$. Then let $\mathrm{x} \in \mathrm{N}\left(\mathrm{w}_{1}\right)$. Since $\mathrm{N}\left(\mathrm{w}_{1}\right)$ is a γ-set, every vertex in $\mathrm{N}^{\mathrm{c}}\left(\mathrm{w}_{1}\right)$ is adjacent to at least one vertex in $N\left(w_{1}\right)$. But $N\left(w_{2}\right) \subseteq N^{c}\left(w_{1}\right)$. Therefore, there exists a vertex $y \in N\left(w_{2}\right)$ such that y is adjacent to a vertex x in $N\left(w_{1}\right)$. Then $\mathrm{d}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=3$.
Theorem 3.2 For any graph $\mathrm{G}, \operatorname{diam}\left(\mathrm{S}_{\gamma}(\mathrm{G})\right) \leq 4$.
Proof Let G be any graph and $\mathrm{S}_{\gamma}(\mathrm{G})$ be its corresponding γ-splitting graph. Let u and v be any two vertices in $\mathrm{S}_{\gamma}(\mathrm{G})$. We claim that $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 4$ for every $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$.
Case (i) If u and v are newly added vertices in $\mathrm{S}_{\gamma}(\mathrm{G})$. By Theorem 3.1, $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 3$.
Case (ii) If u is a newly added vertex and $v \in V(G)$. Then $N(u)$ is a dominating set, and therefore $v \in N(u)$ or v is adjacent to a vertex in $\mathrm{N}(\mathrm{u})$ in $\mathrm{S}_{\gamma}(\mathrm{G})$. This forces that $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$.
Case (iii) Suppose $u, v \in V(G)$. Then there arise two subcases.
Subcase (i) Let u belong to a γ-set S. Then there is a newly added vertex w corresponding to S. If $v \in S$, then $u w v$ is a u-v path of length 2 in $S_{\gamma}(G)$. Therefore $d(u, v) \leq 2$. If $v \notin S$, then there is a vertex v_{1} in S, adjacent to v. Therefore $u w v_{1} v$ is a u-v path of length 3 , and so $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 3$. If v belongs to any other γ-set, then in a similar way we can show that $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 3$.
Subcase (ii) Neither u nor v belongs to any γ-set. Fix a newly added vertex w. Clearly, $\mathrm{N}(\mathrm{w})$ is a γ-set. So $\mathrm{V}(\mathrm{G}) \subseteq \mathrm{N}(\mathrm{N}(\mathrm{w})$) in $\mathrm{S}_{\gamma}(\mathrm{G})$. Therefore, $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 4$. Hence $\operatorname{diam}\left(\mathrm{S}_{\gamma}(\mathrm{G})\right) \leq 4$.
The inequality stated above is strict. For example, $\operatorname{diam}\left(\mathrm{S}_{\gamma}\left(\mathrm{P}_{3 \mathrm{k}}\right)\right)=4$, for any $\mathrm{k} \geq 2$. For example, $\operatorname{diam}\left(\mathrm{S}_{\gamma}\left(\mathrm{P}_{6}\right)\right)=4$ can be verified in Figure 18.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Figure 18
The following corollary gives a characterisation of $\mathrm{S}_{\gamma}{ }^{-}$-graphs.
Corollary 3.3 Any connected graph G with $\operatorname{diam}(\mathrm{G})>4$, is a $\mathrm{S}_{\gamma}{ }^{-}$-graph.
Proof Suppose G is a connected graph and $\operatorname{diam}(\mathrm{G})>4$. Let $\mathrm{S}_{\gamma}(\mathrm{G})$ be its corresponding $\quad \gamma$-splitting graph. By Theorem 3.2, $\operatorname{diam}\left(\mathrm{S}_{\gamma}(\mathrm{G})\right) \leq 4$ and the result follows.

It has been prove in [7], that $\eta\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\begin{array}{l}1 \quad \text { if } \mathrm{n}=3 \mathrm{k}, \mathrm{k} \geq 1 \\ \frac{k^{2}+5 k+2}{2^{\text {if } \mathrm{n}=3 \mathrm{k}+1}, \mathrm{k} \geq 0} \\ k_{\text {if }} \mathrm{f}=3 \mathrm{k}+2, \mathrm{k} \geq 0\end{array}\right.$
and
$\eta\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\begin{array}{lc}3 & \text { if } \mathrm{n}=3 \mathrm{k}, \mathrm{k} \geq 1 \\ \frac{(3 k+1)(k+2)}{2} & \text { if } \mathrm{n}=3 \mathrm{k}+1, \mathrm{k} \geq 1 \\ 3 k+2 & \text { if } \mathrm{n}=3 \mathrm{k}+2, \mathrm{k} \geq 1\end{array}\right.$
Proposition 3.4 The path graph P_{n} is $\mathrm{S}_{\gamma}{ }^{+}$-graph if $\mathrm{n} \leq 2, \mathrm{~S}_{\gamma}{ }^{*}$-graph if $\mathrm{n}=3,4$, and $\mathrm{S}_{\gamma}{ }^{-}$-graph if $\mathrm{n} \geq 5$.
Proposition 3.5 The cycle graph C_{n} is $\mathrm{S}_{\gamma}{ }^{+}$-graph if $\mathrm{n} \leq 5, \mathrm{~S}_{\gamma}{ }^{*}$-graph if $\mathrm{n}=6,7$, and $\mathrm{S}_{\gamma}{ }^{-}$-graph if $\mathrm{n} \geq 8$.

REFERENCES

[1] Selvam Avadayappan and M. Bhuvaneshwari, Cosplitting and coregular graphs, International Journal of Mathematics and Soft Computing Vol.5, (2015), 5764.
[2] Selvam Avadayappan, M. Bhuvaneshwari and B. Vijaya Lakshmi, β-splitting graphs, Preprint.
[3] R. Balakrishnan and K. Ranganathan, A Text Book of graph Theory, Springer-Verlag, New York, Inc(1999).
[4] F. Bunkley and F.Harary, Distance in Graph, Addison-Wesley Reading, 1990.
[5] T.W. Haynes, S.T. Hedetneimi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York, (1998).
[6] Sampath Kumar. E, Walikar. H.B, On the Splitting graph of a graph, (1980), J. Karnatak Uni. Sci 25 : 13.
[7] H. B. Walikar, H. S. Ramane, B. D. Acharya, H.S. Shekhareppa, S. Arumugum, Partially balanced incomplete block design arising from minimum dominating sets of path and cycles, AKCE J. Graph. combin., 4(2) (2007), 223-232.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

