
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
 Perfect Degree Support Product Graphs

Selvam Avadayappan ${ }^{1}$, M. Bhuvaneshwari ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, VHNSN College, Virudhunagar - 626001, India.

Abstract

For a graph $G(V, E)$, the support $s(v)$ of a vertex v is defined as the sum of degrees of its neighbours. A graph G is said to be balanced (highly unbalanced), if the support of all the vertices are same (distinct). Let k be any positive integer. A graph G is said to be a k-perfect degree support graph (k-pds graph) iffor any vertex v in G, the ratio of its support and its degree is the constant k. A graph G is called a k-linear degree support graph (k-lds graph) if, for any two vertices in V with distinct degrees, the ratio of difference between their supports and the difference between their degrees is the constant k. The properties of k - lds graphs and k - pds graphs in various product graphs have been studied in this paper.

Keywords--Support, balanced graphs, highly unbalanced graphs, k - perfect degree support graphs, k - linear degree support graphs.
AMS Subject Classification code (2000): 05C (Primary)

I. INTRODUCTION

Throughout this paper, we consider only finite, simple, undirected graphs. For notations and terminology we follow [3]. A graph G is said to be r - regular, if every vertex of G has degree r. Let G_{1} and G_{2} be any two graphs. The graph $G_{1} \circ G_{2}$ obtained from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} by joining each vertex in the $i^{\text {th }}$ copy of G_{2} to the $i^{\text {th }}$ vertex of G_{1} is called the corona of G_{1} and G_{2}. The cartesian product of G and H is denoted by GXH and their join is denoted by $\mathrm{G} \vee \mathrm{H}$. The composition graph of G_{1} to G_{2} is denoted by $G_{1}\left[G_{2}\right]$. The concepts of support, balanced graphs, highly unbalanced graphs have been introduced and studied by Selvam Avadayappan and G. Mahadevan [1]. The support $\mathrm{s}(\mathrm{v})$ of a vertex v is the sum of degrees of its neighbours. That is, $\mathrm{s}(\mathrm{v})=$ $\sum_{u \in N(v)} d(u)$. Note that the support of any vertex in an $r-r e g u l a r ~ g r a p h ~ i s ~ r^{2}$.
A graph G is said to be a balanced graph, if the support of every vertex in G is equal. It is easy to observe that the complete bipartite graphs $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ and the regular graphs are balanced graphs. A graph G is said to be highly unbalanced, if distinct vertices of G have distinct supports. For example, a highly unbalanced graph is shown in Figure 1.

The following results have been proved in [1]:
Result $1 \sum_{v \in V} s(v)=\sum_{v \in V} d(v)^{2}$.
Result $2 s(v)=(n-1)^{2}$ for every $v \in G$ if and only if $G \cong K_{n}$.
Result 3 For any balanced graph $G, \delta(G)=1$ if and only if $G \cong K_{2}$ or $K_{1, n}$.
Result 4 For any $n \geq 6$, there is a highly unbalanced graph of order n.
Consequently the concepts of k - perfect degree support graph and k - linear degree support graph have been defined in [2]. A graph G is said to be a k-perfect degree support graph (or simply a $k-p d s \operatorname{graph}$), if for any vertex v in $\mathrm{G}, \frac{\mathrm{s}(\mathrm{v})}{\mathrm{d}(\mathrm{v})}=\mathrm{k}$. For example, the graph shown in Figure 2 is a 3 - pds graph. In general, $\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{2}$ is a $3-$ pds graph for any $\mathrm{n}>2$.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

A graph G is said to be a k - linear degree support graph (or simply a k-lds graph), if for any two vertices u and v in G with $d(u) \neq$ $d(v)$ in $G, \frac{s(u)-s(v)}{d(u)-d(v)}=k$, for some integer k. Or equivalently, a graph in which for any vertex $v, s(v)=k d(v)+c$ for some constant c is called a k - lds graph. Note that in a $k-$ lds graph, $s(u)-k d(u)=s(v)-k d(v)$. For example, the graph shown in Figure 3 is a $3-$ lds graph.

Figure 3
In general any k - pds graph is a k - lds graph but not the converse. For example, the graph shown in Figure 3 is a 3 - lds graph but it is not a 3 - pds graph. In fact $\mathrm{k}-$ pds graphs are $\mathrm{k}-\mathrm{lds}$ graphs with $\mathrm{c}=0$. All balanced graphs are $0-$ lds graphs and any $\mathrm{r}-$ regular graphs are r - pds graphs and hence r - lds graphs.
Note that in a k - lds graph, two vertices of same degree have the same support. That is, $d(u)=d(v)$ implies that $s(u)=s(v)$. A few families of k - pds graphs and k - lds graphs with some constraints have been constructed in [2]. Also k - pds trees have been characterized in [2].

In this paper, many new k - lds and k - pds graphs have been generated using various graph products.
k - pds and k - lds product graphs
Regarding the properties of k - lds and k - pds graphs in product graphs, the following facts can be easily verified:
Fact 2.1 A disconnected graph is a k - lds graph if and only if each of its components is a k - lds graph.
Fact 2.2 Let G_{1} be a $k_{1}-$ lds graph and G_{2} be a k_{2} - lds graph. Then $G_{1} \cup G_{2}$ is a $k-$ lds graph if and only if $k_{1}=k_{2}$.
By a (p, q) - graph, we mean a graph with p vertices and q edges.
Fact 2.3 Let G_{1} be a $\left(\mathrm{n}_{1}, \mathrm{~m}_{1}\right)$ - graph and G_{2} be a $\left(\mathrm{n}_{2}, \mathrm{~m}_{2}\right)$ - graph. Then we can easily verify the following:
(i) For any $v \in V\left(G_{1} \cup G_{2}\right)$, we have

$$
\begin{gathered}
d_{G_{1} \cup G_{2}}(v)=d_{G_{1}}(v) \text { and } s_{G_{1} \cup G_{2}}(v)=s_{G_{1}}(v), \text { if } v \in V\left(G_{1}\right) \text { and } \\
d_{G_{1} \cup G_{2}}(v)=d_{G_{2}}(v) \text { and } s_{G_{1} \cup G_{2}}(v)=s_{G_{2}}(v) \text {, if } v \in V\left(G_{2}\right)
\end{gathered}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

(ii) For any $v \in V\left(G_{1} \vee G_{2}\right)$, we have
$d_{G_{1} \vee G_{2}}(v)=d_{G_{1}}(v)+n_{2} ; s_{G_{1} \vee G_{2}}(v)=s_{G_{1}}(v)+n_{2} d_{G_{1}}(v)+2 m_{2}$, if $v \in V\left(G_{1}\right) ; \quad d_{G_{1} \vee G_{2}}(v)=d_{G_{2}}(v)+n_{1} ; s_{G_{1} \vee G_{2}}(v)=s_{G_{2}}(v)+$ $\mathrm{n}_{1} \mathrm{~d}_{\mathrm{G}_{2}}(\mathrm{v})+2 \mathrm{~m}_{1}$, if $\mathrm{v} \in \mathrm{V}\left(\mathrm{G}_{2}\right)$
(iii) For any $(u, v) \in V\left(G_{1} \times G_{2}\right)$, we have
$\mathrm{d}_{\mathrm{G}_{1} \times \mathrm{G}_{2}}((\mathrm{u}, \mathrm{v}))=\mathrm{d}_{\mathrm{G}_{1}}(\mathrm{u})+\mathrm{d}_{\mathrm{G}_{2}}(\mathrm{v})$ and
$\mathrm{s}_{\mathrm{G}_{1} \times \mathrm{G}_{2}}((\mathrm{u}, \mathrm{v}))=2 \mathrm{~d}_{\mathrm{G}_{1}}(\mathrm{u}) \mathrm{d}_{\mathrm{G}_{2}}(\mathrm{v})+\mathrm{s}_{\mathrm{G}_{2}}(\mathrm{v})+\mathrm{s}_{\mathrm{G}_{1}}(\mathrm{u})$,
(iv) For any $(u, v) \in V\left(G_{1}\left[G_{2}\right]\right)$, we have

$$
\mathrm{d}_{\mathrm{G}_{1}\left[\mathrm{G}_{2}\right]}((\mathrm{u}, \mathrm{v}))=\mathrm{n}_{2} \mathrm{~d}_{\mathrm{G}_{1}}(\mathrm{u})+\mathrm{d}_{\mathrm{G}_{2}}(\mathrm{v})
$$

(v) Let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$.In $V\left(G_{1} \circ G_{2}\right)$, let $u_{i j}$ denote the vertex corresponding to $u_{j} i n$ the $i^{\text {th }}$ copy of G_{2}. Then we have,

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G}_{1}{ }^{\circ} \mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{n}_{2} \text { and } \mathrm{s}_{\mathrm{G}_{1}{ }^{\circ} \mathrm{G}_{2}}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{s}_{\mathrm{G}_{1}}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{n}_{2} \mathrm{~d}_{\mathrm{G}_{1}}(\mathrm{v})+2 \mathrm{~m}_{2}+\mathrm{n}_{2}, \\
& \mathrm{~d}_{\mathrm{G}_{1}{ }^{\circ} \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{ij}}\right)=\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{ij}}\right)+1 \text { and } \mathrm{s}_{\mathrm{G}_{1}{ }^{\circ} \mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{ij}}\right)=\mathrm{s}_{\mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{ij}}\right)+\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{u}_{\mathrm{ij}}\right)+\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{n}_{2} .
\end{aligned}
$$

Now let us prove some results on k - lds and k - pds product graphs.
Theorem 2.4 If G is a $k-1 d s$ graph of order n, then $G \vee G$ is $a(k+n)-$ lds graph.
Proof Let G be any $k-d s l$ graph of order n. Then for any two vertices v_{i} and v_{j} of distinct degrees, $\frac{s_{G}\left(v_{i}\right)-s_{G}\left(v_{j}\right)}{d_{G}\left(v_{i}\right)-d_{G}\left(v_{j}\right)}=k$. Now consider G $\vee G$. Then the degree of every vertex gets increased by n and the support of any vertex gets increased by its degree times n. For any two vertices of distinct degrees, $\frac{s_{G V G}\left(v_{i}\right)-s_{G V G}\left(v_{j}\right)}{d_{G V G}\left(v_{i}\right)-d_{G \vee G}\left(v_{j}\right)}=\frac{s_{G}\left(v_{i}\right)+n d_{G}\left(v_{i}\right)-s_{G}\left(v_{j}\right)-n d_{G}\left(v_{j}\right)}{d_{G}\left(v_{i}\right)-d_{G}\left(v_{j}\right)}=k+n$. Hence, $G \vee G$ is $a(k+n)-l d s$ graph. For example, a 1 - lds graph P_{4} and the corresponding 5 - lds graph $P_{4} \vee P_{4}$ are shown in Figure 3 .

Figure 3
Theorem 2.5 Let G be any (n, m) - graph. If $G \vee K_{1}$ is a k - pds graph, then $\frac{2 m}{n}=k-1$.
Proof Let G be a graph with n vertices and m edges such that $G \vee K_{1}$ is a k - pds graph. Let v be the vertex of K_{1}. Then clearly v is a full vertex with support $\mathrm{s}_{\mathrm{G} \vee \mathrm{K}_{1}}(\mathrm{v})=\frac{\sum_{\mathrm{u} \in \mathrm{V}(\mathrm{G})} \mathrm{d}_{\mathrm{G} v \mathrm{~K}_{1}}(\mathrm{u})}{n}=\frac{\sum_{\mathrm{u} \in \mathrm{V}(\mathrm{G})} \mathrm{d}_{\mathrm{G}}(\mathrm{u})+\mathrm{n}}{\mathrm{n}}=\frac{2 \mathrm{~m}+\mathrm{n}}{\mathrm{n}}=\mathrm{k}$. Hence the proof.

Theorem 2.6 There does not exist a k - pds graph G such that $\mathrm{G} \vee \mathrm{K}_{1}$ is also k - pds.
Proof Suppose G is a k - pds graph such that $G \vee K_{1}$ is a k - pds graph. Then for any vertex v in $G, s_{G}(v) / d_{G}(v)=s_{G \vee K_{1}}(v) /$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$d_{G \vee K_{1}}(v)=k$. Now by using Fact 5.8 (ii), $\frac{s_{G}(v)+d_{G}(v)+n}{d_{G}(v)+1}=k$. That is, $\frac{\operatorname{kd}_{G}(v)+d_{G}(v)+n}{d_{G}(v)+1}=k$, which implies $d_{G}(v)=k-n$. Since $G \vee K_{1}$ is connected, we have $\mathrm{k}>\mathrm{n}$. In other words, $\mathrm{s}_{\mathrm{G}}(\mathrm{v})>\mathrm{n}_{\mathrm{G}}(\mathrm{v})$ which is impossible. Therefore such a graph G does not exist

Theorem 2.7 For an r - regular graph G of order n_{1} and a k - regular graph H of order $n_{2}, \quad G \circ H$ is $a(r+k)-$ pds graph.
Proof Let G and H be r - regular and k - regular graphs respectively. Then by Fact 2.3 (v), $\mathrm{G} \circ \mathrm{H}$ is a biregular graph. In particular, $s_{G^{\circ} H}(v)=r+n_{2} ; s_{G^{\circ} H}(v)=r^{2}+n_{2}(r+k+1)$, for any $v \in V(G)$ and $d_{G^{\circ} H}(u)=k+1 ; s_{G^{\circ} H}(u)=k^{2}+k+r+n_{2}$, for all $u \in$ $\mathrm{V}(\mathrm{H})$. Therefore we get $\frac{\mathrm{s}_{\mathrm{G}^{\circ} \mathrm{H}}(\mathrm{v})-s_{G^{\circ} \mathrm{H}}(\mathrm{u})}{d_{G^{\circ}}(\mathrm{v})-d_{G^{\circ}}(\mathrm{u})}=r+k$. Hence $\mathrm{G} \circ \mathrm{H}$ is a $(\mathrm{r}+\mathrm{k})-\mathrm{pds}$ graph. For example, $\mathrm{K}_{3,3} \circ \mathrm{~K}_{2}$ which is a $5-\mathrm{pds}$ graph is shown in Figure 4.

Figure 4
Theorem 2.8 For any two regular graphs G and $\mathrm{H}, \mathrm{G}[\mathrm{H}]$ is a k - pds graph.
Proof Suppose G is an r - regular graph of order n_{1} and H is a k - regular graph of order n_{2}. Then it is easy to note that $G[H]$ is a $\left(n_{2} r\right.$ $+k)$ - regular graph and hence $a\left(n_{2} r+k\right)$ - pds graph. For example, $C_{4}\left[K_{2}\right]$ which is a $5-$ pds graph is shown in Figure 5 .

Figure 5
Theorem 2.9 If G is a k - lds graph, then $G \times H$ is a $(k+2 r)$ - lds graph, for any $r-r e g u l a r ~ g r a p h ~ H . ~$
Proof Let G be any k - lds graph and H be any r - regular graph. Then $\frac{s_{G}\left(v_{i}\right)-s_{G}\left(v_{j}\right)}{d_{G}\left(v_{i}\right)-d_{G}\left(v_{j}\right)}=k$, for any two vertices v_{i} and v_{j} of distinct degrees in G and $s_{H}(w)=r^{2}$ for any vertex w in H. Using Fact 2.3 (iii), for any two vertices in $G \times H$, we have $s_{G \times G}\left(v_{i}, W_{k}\right)-s_{G \times G}$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$\left(\mathrm{v}_{\mathrm{j}}, \mathrm{w}_{\mathrm{l}}\right)=(\mathrm{k}+2 \mathrm{r})\left\{\mathrm{d}_{\mathrm{G} \times \mathrm{G}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{W}_{\mathrm{k}}\right)-\mathrm{d}_{\mathrm{G} \times \mathrm{G}}\left(\mathrm{v}_{\mathrm{j}}, \mathrm{w}_{\mathrm{l}}\right)\right\}$, which implies that $\mathrm{G} \times \mathrm{H}$ is a $(\mathrm{k}+2 \mathrm{r})-$ graph.
For example, a 1 - lds graph P_{4} and the corresponding 5 - lds graph $\mathrm{P}_{4} \times \mathrm{C}_{4}$ are shown in Figure 6.

REFERENCES

[1] Selvam Avadayappan and G. Mahadevan, Highly unbalanced graphs, ANJAC Journal of Sciences, 2(1), 23 - $27,2003$.
[2] Selvam Avadayappan and M. Bhuvaneshwari, Perfect degree support graphs, (Preprint).
[3] R.Balakrishnan and K. Ranganathan, A Text Book of graph Theory, Springer-Verlag, New York, Inc(1999).

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

