

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 4 Issue: VI Month of publication: June 2016 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

Special Rectangles and Narcissistic Numbers of Order 3 And 4

G.Janaki¹, P.Saranya²

^{1,2}Department of Mathematics, Cauvery College for women, Trichy-620018

Abstract— We search for infinitely many rectangles such that $x^2 + y^2 + 3A - S^2 + k^2 + SK = Narcissistic numbers of order 3 and 4 respectively, in which x, y represents the length and breadth of the rectangle.$

Also the total number of rectangles satisfying the relation under consideration as well as primitive and non-primitive rectangles are also present.

Keywords—Rectangle, Narcissistic numbers of order 3 and 4, primitive, non-primitive.

I. INTRODUCTION

The older term for number theory is arithmetic, which was superseded as number theory by early twentieth century. The first historical find of an arithmetical nature is a fragment of a table, the broken clay tablet containing a list of Pythagorean triples. Since then the finding continues.

For more ideas and interesting facts one can refer [1].In [2] one can get ideas on pairs of rectangles dealing with non-zero integral pairs representing the length and breadth of rectangle. [3,4] has been studied for knowledge on rectangles in connection with perfect squares, Niven numbers and kepriker triples.[5-10] was referred for connections between Special rectangles and polygonal numbers, jarasandha numbers and dhuruva numbers

Recently in [11,12] special pythagorean triangles in connections with Narcissistic numbers are obtained.

In this communication, we search for infinitely many rectangles such that $x^2 + y^2 + 3A - S^2 + k^2 + SK =$ Narcissistic numbers of order 3 and 4 respectively, in which x,y represents the length and breadth of the rectangle.

Also the total number of rectangles satisfying the relation under consideration as well as primitive and non-primitive rectangles are also present.

II. NOTATIONS

A-Area of the rectangle

S-Semi-perimeter of the rectangle

III. BASIC DEFINITIONS

Definition 1:Narcissistic Numbers

An n-digit number which is the sum of nth power of its digits is called an n-narcissistic number. It is also known as Armstrong number.

Definition 2: Primitive Rectangle

```
A rectangle is said to be primitive if the generators u,v are of opposite parity and gcd(u,v) = 1, where
```

x = u + v; y = u - v and u > v > 0

IV. METHOD OF ANALYSIS

Let x, y be two non-zero distinct positive integers representing the length and breadth of a rectangle R.Let $k \ge 0$ be any given integer.

The problem under consideration is to solve the equation

$x^{2} + y^{2} + 3A - S^{2} + k^{2} + Sk =$ Narcissistic Number	(1)
To solve (1), let us introduce the linear transformation $x = u + v$ and $y = u - v$ ($u > v > 0$)	(2)
Therfore (1) reduces to	
$(u+k)^2 - v^2 = $ Narcissist ic Number	(3)
Case1:	

Consider the 3rd order Narcissistic Number 153.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

Therefore (3) becomes,

$$(u+k)^2 - v^2 = 153$$

Applying the method of factorization, we have

u+k	13	27	77
v	4	24	76

From the above mentioned values, the following results are observed.

TABLE I

k	No.of Rectangles related to 153	Observations
0	3	2 rectangles are primitive and one is non-primitive.
1.2	2	For $k = 1$, both the rectangles are non-primitive.
1,2	2	For $k = 2$, both the rectangles are primitive.
38	1	For $k = 3,5,7,8$, the rectangles are non- primitive.
5-0	1	For $k = 4,6$, the rectangles are primitive.

Case2:

Consider the 3rd order Narcissistic Number 371.

Therefore (3) becomes,

 $(u+k)^2 - v^2 = 371$

Applying the method of factorization, we have

u+k	30	186
v	23	185

From the above mentioned values, the following results are observed.

TABLE II

k	No.of Rectangles related to 371	Observations
0	2	Both the rectangles are primitive
1-6	1	For $k = 1,3,5$, the rectangles are non-primitive For $k = 2,4,6$, the rectangles are primitive.

Case3:

Consider the 3rd order Narcissistic Number 407.

Therefore (3) becomes,

$$(u+k)^2 - v^2 = 407$$

Applying the method of factorization, we have

u+k	24	204
v	13	203
-		

From the above mentioned values, the following results are observed.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

TABLE III

k	No.of Rectangles related to 407	Observations
0	2	Both the rectangles are primitive
1-10	1	For $k = 1,3,5,7,9$, the rectangles are non-primitive For $k = 2,4,6,8,10$, the rectangles are primitive.

Case 4:

Consider the 4th order Narcissistic Number 8208.

Therefore (3) becomes,

 $(u+k)^2 - v^2 = 8208$

Applying the method of factorization, we have

u+k	92	93	103	127	132	183	237	348	517	687	1028	2053
v	16	21	49	89	96	159	219	336	509	681	1024	2051

From the above mentioned values, the following results are observed.

TABLE IV

k	No.of Rectangles related to 8208	Observations
0.1	,1 12	For $k = 0$, all the rectangles are non-primitive
0,1		For $k = 1$, all the rectangles are primitive
2.2	11	For $k = 2$, all the rectangles are non-primitive
2,5	2,5 11	For $k = 3$, there are 5 primitive and 6 non-primitive rectangles
15	10	For $k = 4$, all the rectangles are non-primitive
4,5	10	For $k = 5$, there are 8 primitive and 2 non-primitive rectangles
67	0	For $k = 6$, all the rectangles are non-primitive
0,7	9	For $k = 7$, all the rectangles are primitive
		For $k = 8,10$ all the rectangles are non-primitive
8-11	8	For $k = 9$, there are 3 primitive and 5 non-primitive rectangles
		For $k = 11$ all the rectangles are primitive
		For $k = 12,14,16$ all the rectangles are non-primitive
12-17	7	For $k = 13,17$ all the rectangles are primitive
		For $k = 15$, there are 3 primitive and 4 non-primitive rectangles
		For $k = 18,20,22$ all the rectangles are non-primitive
18-23	6	For $k = 19,23$ there are 5 primitive and 1 non-primitive rectangles
		For $k = 21$, there are 3 primitive and 3 non-primitive rectangles
		For $k = 24,26,28,30,32,34$ all the rectangles are non-primitive
24.35	5	For $k = 25,29,31,35$ all the rectangles are primitive
24-33	5	For $k = 27$, there are 3 primitive and 2 non-primitive rectangles
		For $k = 33$, there are 2 primitive and 3 non-primitive rectangles
26.27	4	For $k = 36$, all the rectangles are non-primitive
50,57	4	For $k = 37$, there are 3 primitive and 1 non-primitive rectangles
38 52	3	For $k = 38,40,42,44,46,48,50,52$ all the rectangles are non-primitive
30-33	5	For $k = 41,43,49,53$ all the rectangles are primitive

©IJRASET: All Rights are Reserved

Volume 4 Issue VI, June 2016 ISSN: 2321-9653

www.ijraset.com IC Value: 13.98

International Journal for Research in Applied Science & Engineering

I CUMULUE (IJNASLI)	Techno	logy	(IJRA	SET)
---------------------	---------------	------	-------	--------------

		For $k = 39,45,47,51$ there are 2 primitive and 1 non-primitive rectangles
		For $k = 54,56,58,60,62,64,66,68,70$ all the rectangles are non-
54 71	2	primitive
54-71 2	2	For $k = 55,59,61,67,71$ all the rectangles are primitive
		For $k = 57,63,65,69$ there are 1 primitive and 1 non-primitive rectangles
70 75	1	For $k = 72,74$ the rectangles is non-primitive
12-15	1	For $k = 73,75$ the rectangles is primitive

V. CONCLUSION

To conclude, one may search for the connections between the rectangles and Narcissistic numbers of higher order and other number patterns.

REFERENCES

- [1] Dickson L. E., (1952) History of Theory of Numbers, Vol. 11, Chelsea Publishing Company, New York.
- [2] J. N. Kapur, Dhuruva numbers, Fascinating world of Mathematics and Mathematical sciences, Trust society, Vol 17, 1997.
- [3] M. A. Gopalan and A. Vijayasankar, "Observations on a Pythagorean problem", Acta Ciencia Indica, Vol.XXXVI M, No 4, 517-520, 2010.
- [4] M. A. Gopalan, A. Gnanam and G. Janaki, "A Remarkable Pythagorean problem", Acta Ciencia Indica, Vol.XXXIII M, No 4, 1429-1434, 2007
- [5] M. A. Gopalan and A. Gnanam, "Pythagorean triangles and Polygonal numbers", International Journal of Mathematical Sciences, Vol 9, No. 1-2, 211-215, 2010
- [6] M. A. Gopalan and G. Janaki, "Pythagorean triangle with perimeter as Pentagonal number", Antartica J. Math., Vol 5(2), 15-18, 2008
- [7] M. A. Gopalan and G. Janaki, "Pythagorean triangle with nasty number as a leg", Journal of Applied Mathematical Analysis and Applications, Vol 4, No 1-2, 13-17, 2008
- [8] G.Janaki and S.Vidhya, "Rectangle with area as a special polygonal number", International Journal of Engineering Research, Vol-4, Issue-1, 88-91, 2016
- [9] G.Janaki and C.Saranya, "Special Pairs of Pythagorean Triangles and Jarasandha Numbers", American International Journal of Research in Science, Technology, Engineering & Mathematics, issue-13, 118-120, Dec 2015-Feb 2016
- [10] M. A. Gopalan, Vidhyalakshmi.S and Shanthi, "A connection between rectangle and dhuruva Numbers of digits 3 and 5", International Journal of Recent Scientific Research Vol. 7, Issue, 2, pp. 9234-9236, March, 2016
- [11] G.Janaki and P.Saranya, "Special pairs of Pythagorean triangles and narcissistic number", International Journal of Multidisciplinary Research and Development, Volume 3; Issue 4; April 2016; Page No. 106-108
- [12] G.Janaki and P.Saranya, "Special Pythagorean Triangles in Connection with the Narcissistic Numbers of Order 3 and 4", American International Journal of Research in Science, Technology, Engineering & Mathematics, Volume-2, Issue 14, March-May 2016.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)